
Chapter 22 --- Caring for Software- and Computer-based Art

1

Chapter 22

Editors’ Notes: For this chapter on caring for software- and computer-based art, the editors of
this book, Deena Engel (Clinical Professor Emerita, Department of Computer Science,
Courant Institute, New York University, USA) and Joanna Phillips (Director, Düsseldorf
Conservation Center, Germany) take on the role as authors and are joined by Tom Ensom
(Tate/Independent, UK) and Patricia Falcao (Tate/Goldsmiths, University of London, UK).
Deena Engel and Joanna Phillips draw from their five-year museum-academic collaboration
to study and treat software-based works at the Solomon R. Guggenheim Museum, New York,
where Phillips previously served as Senior Conservator of Time-based Media. At Tate,
conservators Tom Ensom and Patricia Falcao collaborate towards improving the care of
software based-artworks in the collection, drawing from practices outside the conservation
field and synthesizing them to the institutional context.

With their combined expertise and experience, the authors step through an ideal acquisition
process that enables the preservation of software- and computer-based artworks for the future.
An in-depth look at the technical make-up of software-based art aims to serve as a foundation
for its examination, documentation and treatment, and an overview of different conservation
practices and treatment approaches is offered to inform the decision-making process towards
sustaining the collection life of these artworks.

Caring for Software- and Computer-based Art
Deena Engel, Tom Ensom, Patricia Falcao, and Joanna Phillips

22.1 Introduction

Within the field of time-based media conservation, the newest area of specialization is the care
for software- and computer-based art. While contemporary artists have been employing software
and computers since the mid twentieth-century, the number of collected artworks in this category
is still relatively small even in major international collections with large time-based media
holdings. Over the last decade, however, as artists continue to embrace the latest digital
technologies in their work and collectors are growing more confident in their ability to care for
these works, an ever-increasing number of software- and computer-based artworks are entering
art collections. The wide variety of these works ranges from web artworks viewed in a browser
to generative animations on the screens of Times Square, from robotic arms performing in the
gallery to game-like apps on your mobile phone.

However diverse in experience, these works have many commonalities with other types of time-
based media in regard to their conservation: they must be understood and treated as dynamic
systems of interdependent hardware and software components; their industrially produced
technologies may be replaceable and/or variable; and their inherent change has to be managed
carefully to prevent damage to their integrity. But the extreme complexity of their systems and
their accelerated obsolescence and failure can make their care more challenging than caring for
“traditional time-based media works” (Laurenson 2014), and the specialty expertise needed to
maintain and treat them can be very specific.

Chapter 22 --- Caring for Software- and Computer-based Art

2

To address these challenges and support the collection and longevity of software-based art,
different communities, initiatives, and institutions have been researching and developing new
conservation practices and conceptual frameworks in recent years. Contemporary art museums
have launched dedicated projects such as the Conserving Computer-based Art initiative at the
Guggenheim Museum in New York (Guggenheim Blog 2016, Guggenheim Museum -
CCBA 2019) and the projects Software-based Art Preservation (Ensom et al. 2021) and
Preserving Immersive Media (McConchie et al. 2021) at Tate in London and have organized
dedicated symposia (Smithsonian - TBMA Symposia 2014, AIC - TechFocus III 2015). Cross-
institutional networks have been formed to transfer knowledge across disciplines, such as the
Community of Practice on Software-based Art (Dekker and Falcao 2017) in the Pericles project
and the Software Preservation Network (SPN 2022). In-depth case studies are used to map
artwork needs and catalyze new conservation responses (Lintermann et al. 2013, Fino-Radin
2016, Phillips et al. 2018, Roeck et al. 2019, Sherring et al. 2021). The range of research topics is
continuously expanding and covers, among many other topics: approaches to analysis for their
examination and treatment (Engel and Wharton 2014, Engel and Wharton 2015, Ensom 2018);
the continued access to legacy artworks through emulation (Rechert et al. 2016, Roeck 2018),
EaaS - emulation as a service (Espenschied et al. 2013), virtualization (Falcao et al. 2014, LIMA
2018); collecting and conserving web-based artworks (Hellar 2015, Dekker 2018); the
development of tools such as Webrecorder and Conifer by Rhizome (Webrecorder (software)
n.d.; Rhizome - Conifer (software) n.d.), as well as Rhizome’s research into the use of linked
open data to describe web-based artworks and preservation information (Rossenova 2020b,
Fauconnier 2018); the documentation of software-based artworks (Lurk 2013, Barok et al. 2019,
Ensom 2019), the collection, preservation and treatment of source code (Swalwell and DeVries
2013; Di Cosmo et al. 2017; Engel and Phillips 2018); and the application of conservation ethics
to the examination and treatment of software-based art (Engel and Phillips 2019).

In addition, notable artists have taken the initiative to reflect and advise on collecting and
sustaining software-based works (McGarrigle 2015, Lozano-Hemmer 2015, Reas 2016) and
researchers such as Qinyue Liu and Colin Post have also reviewed conservation practices by
artists (Liu 2020; Post 2017).

Chapter 22 acknowledges the point of acquisition as a decisive moment in the life of a software-
based artwork and guides the reader through the collection process (Section 22.2). Section 22.3
offers an in-depth look at the technical make-up of software-based art, and Section 22.4 explores
a variety of conservation treatment practices.

GLOSSARY:

algorithm: a defined sequence of steps or instructions to accomplish a specific task.

API (Application Programming Interface): An API defines interactions between software
applications; it is commonly used to exchange files or data.

Chapter 22 --- Caring for Software- and Computer-based Art

3

bus: A communication system for transferring data between components of a computer,
including wiring, connectors, ports, and protocols.

client-side: When application code runs on the user’s machine, that is considered “client-side”
e.g., the HTML/CSS code of a website. (See server-side for comparison.)

 command line interface (CLI): This interface allows users to issue commands and run
programs by typing text and using the keyboard for navigation. (See graphical user interface
for comparison.)

comments (in source code): Comments are annotations, instructions, documentation, or other
notes written within the code of a computer program which are meant for human readers and
ignored by the computer.

CPU: Central Processing Unit; an integrated circuit which can execute instructions
represented as computer code.

cross-browser compatibility: This is a feature of websites which run successfully under
different browsers and fail gracefully when necessary.

downwardly compatible: Downwardly compatible software (also referred to as backwards
compatible software) refers to a programming language or application that can continue to run
files written for earlier versions of that language or software.

device driver: Also simply called a driver, a device driver is a computer program that is used
to manage external devices such as a printer, scanner, or other equipment. Drivers are specific
to both the computer’s operating system and to the device.

emulation: The use of software or hardware tools called emulators, which allow one computer
system to behave as if it were a different computer system, to run software on computer
hardware which it was not designed for.

EPROM: Erasable Programmable Read Only Memory; non-volatile storage which can be
read from, written to, and erased using a strong ultraviolet light.

EEPROM: Electrically Erasable Programmable Read Only Memory; non-volatile storage
which can be read from, written to, and erased using an electrical signal.

executable: An application file that runs when accessed; for example, when one calls it up at
the command line and hits <ENTER> or “double-clicks” on it with a mouse within a graphical
user interface.

GUI (graphical user interface): A GUI offers the user graphical icons and audio along with
devices such as a mouse. (See command-line interface for comparison.)

hardware environment: a set of interconnected hardware components which a specific
software program requires to run. (See software environment for comparison.)

Chapter 22 --- Caring for Software- and Computer-based Art

4

HDD: Hard Disk Drive; a non-volatile storage device which reads and writes data from a
magnetic platter.

human-readable file or data: These contents can be opened in a text editor or at the
command line and rendered without special characters so that a human being can naturally
read them. For example, the digits directly below a bar code are the human-readable portion of
the information.

integrated circuit (IC): A circuit contained on a single piece of semiconductor material. Also
known as a microchip or chip.

library: A software library contains additional code that is used with a given application or
programming language. In many cases, the library is considered a “third party library”,
meaning that the external library was not written by the same developers who wrote the
application or programming language that calls the library.

OS: This acronym refers to “operating system”, the software that controls a device’s basic
functions such as file management, managing peripherals, the user interface and more.
Examples include Windows, MacOS, Linux and more.

PCB: Printed-circuit-board; a fabricated circuit consisting of a conductive material in a non-
conductive substrate, that forms a base for mounting electronic components.

PROM: Programmable Read Only Memory; non-volatile storage which can be read from but
only written to once.

RAM: Random Access Memory; volatile storage used to store data and programs when they
are accessed.

ROM: Read Only Memory; non-volatile storage which can only be read from and not written
to.

server-side: When application code runs on the server e.g., in PHP or Perl, it is considered
“server-side”. (See client-side for comparison.)

software environment: a set of interconnected software components which a specific
software program requires to run. (See hardware environment for comparison.)

software obsolescence: As hardware, operating systems and other elements of a system
change over time, many programming languages and software applications will not run as
expected or will no longer run at all.

source code: Human-readable set of instructions, written in a formal programming language,
that tell a computer what to do.

SQL (Structured Query Language): Often pronounced “Sequel”, SQL is a language used to
manage data and databases.

Chapter 22 --- Caring for Software- and Computer-based Art

5

SSD: Solid State Drive; a non-volatile storage device which reads and writes data from solid
state flash memory.

VCS (version control software): VCS refers to software applications that are used to manage
and document change across computer programs, documents, and other files. Git (often used
with tools by GitHub) is an example of a popular VCS application.

WYSIWYG (what you see is what you get): An acronym that signals when output to the
printer or web reflects what the user sees on the screen e.g., when developing content using
desktop publishing, web development or graphics software.

22.2 Collecting Software- and Computer-based Art

When software- and computer-based artworks are collected, their sustainability comes into
focus. The responsibility for their care and maintenance is transmitted from the artist to the new
owner, and each artwork’s longevity will critically depend on the actions taken - or not taken -
by its new custodians. Before a collected artwork breaks down or requires repair and
maintenance, there are important steps that should already occur in the acquisition process to
enable future preservation. Relevant information about the artwork and its underlying technical
systems has to be gathered, preservation-critical components have to be collected, and rights and
responsibilities cleared. Conducting an initial preservation risk assessment and projecting future
needs of an artwork can critically inform the acquisition process and help to successfully sustain
the artwork’s collection life (Falcao 2019). This is why it is best practice to include conservators
and other relevant stakeholders in the acquisition process as early as possible and to proactively
define the deliverables needed to support the longevity of a work.

When bringing software-based artworks into a collection, it is ideal to examine and document
them as soon as possible after their creation when they are still fully functional in their native
hardware and software environments and display all of the behaviors intended by the artist.
Surveying artworks later, perhaps years after their entry into the collection, bears the risk of
software or hardware malfunction that could go unnoticed. As an example, when viewing the
Guggenheim’s web artwork Brandon (1998-1999) by Shu Lea Cheang prior to its 2016-2017
restoration, words that were intended to blink across the sprawling website appeared static. The
words were still legible, and it would not occur to an audience unfamiliar with the work that the
blinking function was indeed missing, as contemporary browsers no longer supported the HTML
blink tags. Only source code analysis (see 22.3.6) revealed the missing functionality (Phillips et
al. 2017; Engel et al. 2018). Had there been a simple video of the piece, recorded around the time
of its creation, collection caretakers would have had a valuable reference when visually assessing
loss and damages many years later.

Chapter 22 --- Caring for Software- and Computer-based Art

6

Learning from experiences like this, the conservation community has developed a range of
acquisition practices to support the future preservation of software- and computer-based works.

22.2.1 What is the Artwork? Understanding the Intended Experience

The best way to start an acquisition process is to experience an artwork first-hand, installed and
running. This creates an immediate impression of its intended behaviors and potential
implications for conservation and maintenance and critically informs the acquisition process.
Many artwork features and behaviors may not be spelled out in the artist-provided information
and are not easily transmitted through documentation. This is particularly true for interactive
works that require audience engagement or data input.

When first experiencing a software-based artwork in operation, collection caretakers aim to
answer questions like the following:

● What is the artwork intended to do and how is the audience expected to interact with it?
● What are the conditions of display and space?
● What are the employed technologies (software and hardware), and do they have an

aesthetic or conceptual relevance for the artwork that could make them hard to replace?
● What could challenge the maintenance, upkeep, or repair of the work for the next few

exhibitions, as well as far into the future?

Experiencing the work pre-acquisition, even if only partially installed during an acquisition
committee meeting or in a gallery set-up, may be the last opportunity to gather relevant
information before the new owner is charged with the next re-installation. It is therefore
advisable to produce as much documentation as possible on this occasion, whether by means of
video, via screen recording or a combination of different documentation methods (see Chapter
11).

22.2.2 Researching the Meaning, Making, History and Context

Contextual and technical research during the acquisition phase is a key preservation step for
software-based art and lays the groundwork for appropriate conservation strategies. While
variability and change are integral to all time-based media, they are particularly fast paced and
urgent in software- and computer-based artworks. Any operating system (OS) or browser update,
hardware failure, software obsolescence or conceptual preference (for instance, if an artist wants
to see their historical web artwork updated to run on mobile devices) can be a driving factor for
changes to an artwork. The research phase aims to answer questions like the following:

● What is the artwork’s previous history of exhibition and change? How has it evolved or
been updated over time?

● Were some iterations considered more successful than others, and if so, why?
● How was the artwork conceived and produced (technically and conceptually) and what is

significant about it?
● Who was involved in the development of the work?
● Which programming language(s) or software technologies did the artist (or programmer)

use, and for what reason?

Chapter 22 --- Caring for Software- and Computer-based Art

7

● How do they relate to other hardware or software technologies that the artist/technician
uses? Is this platform used regularly by the artist, or is it a one-off?

● Where does the artwork sit within the practice of the artist and the overall artistic and
technological practice of its period?

● How common was that technology at the moment when the artwork was produced?
● How is the artwork experienced and perceived by the audience? the press? the public?

The information sources consulted during this research phase may include, among others: artist-
provided manuals, relevant internal and external email correspondence, conversation notes,
video recordings of the functioning work, images and videos of a work on social media, entries
on media art databases (e.g., ADA | Archive of Digital Art (website) n.d.), catalogue texts,
curatorial descriptions of a work, artists’ websites, or GitHub pages. Gathering and organizing
this information, e.g., with the help of templates (Guggenheim Museum - CCBA n.d.; Ensom et
al. 2021; The Metropolitan Museum of Art - Sample Documentation and Templates n.d.), will
support an informed discussion with the artist. Conducting formal acquisition interviews with
living artists is a common practice in many contemporary art collections (see Chapter 17); in the
case of software-based artworks, such interviews may also include programmer(s) and others
with in-depth knowledge of the technological make-up of a work.

The process of analyzing and documenting artwork components is iterative and a deeper analysis
of the system, as detailed under 22.3, will produce further information. Eventually, the object file
of a software-based artwork will contain a range of documentation, including but not limited to a
component-based inventory (see 22.2.3), display and configuration instructions, identity, and
iteration reports (see Chapter 11), a component-based risk assessment (see 22.2.6 and Table
22.1), any source code documentation (see 22.3.6), and metadata in the collection management
system.

Considering the context of the collecting institution, including the type and size of the collection,
resources, and expertise available, is fundamental to devising sustainable preservation strategies.

22.2.3 Identifying the Anatomy of the Work

To effectively care for a software-based artwork, collection caretakers need to identify its
interconnected hardware and software components and understand their relative importance in
realizing the artwork’s work-defining properties, as well as how each component potentially
affects the way the system behaves.

The materials supplied by the artist will often consist of an executable file or sets of files and
directories, a computer with peripherals ready to be set up in a gallery for display or, for web-
based art, a group of files and folders to be uploaded to an institutional web server. Some artists
may also supply source code, or other source materials. Additional components may include
sculptural elements, temporary exhibition hardware (e.g., a projection screen or monitor),
replacement parts or hard drives with back-up files and software not included in the OS.

For complex works with many elements it is helpful to start with a basic inventory listing all the
known components of the artwork. The example in Table 22.1 illustrates how a component-

Chapter 22 --- Caring for Software- and Computer-based Art

8

based inventory can then be expanded to structure the analysis and risk assessment process and
support the development of preservation strategies.

The inventory should record basic information on hardware, software, and data components, and
note their functionality and the relationships among the components. For hardware components,
peripherals and connectors should be considered, and standards, protocols, makes and models
specified. See 22.3.1 for an overview of commonly encountered computer components and
22.3.2 for guidance on analyzing and documenting hardware. For an introduction to software
technologies, see 22.3.4 through 22.3.8.

Chapter 22 --- Caring for Software- and Computer-based Art

9

Table 22.1 Example of an initial, basic inventory and component-based risk assessment. This table models the type of information
that may be captured in the process; the level of available detail, including the work-defining properties of computer components, may
deepen with continued examination and stakeholder involvement.

Basic Inventory Risk Assessment Preservation
Strategies

Components
(hardware,

software, data,
project files

etc.)

Make
and
Model

Function,
specs,

relationship
s

Work-defining
properties

Significanc
e

Hazards /
Risk

Recoverabili
ty

Computer Torch
RedFoC
S (2003)

Executes
artwork; is
joint with
monitor
and
mounted /
hidden
behind it;
see spec
sheet

Fits behind
monitor; capable
of running the OS
and executable
file, sends display
information to
monitor

Functional;
conceptual;
historical
(early
example of
monitor
with built-in
computer)

Wear and
tear; most at
risk: hard
disk, CPU,
power supply,
video cards
and
capacitors.
Risk is high

Replaceable,
as long as it
remains
invisible
behind
monitor and
has
appropriate
video output

Controlled storage
(climate, dust-free,
ESD-safe); create and
store disk image;
source and set up spare
computer (for possible
replacement); clean
regularly, particularly
when on display

Monitor Torch
RedFoC
S / LCD
NEC LC
(2003)

Displays
artwork;
joint with
computer;
see spec
sheet

4:3 aspect ratio;
slim black frame;
screen size 17” to
19”; LCD panel
type

Functional;
aesthetic;
conceptual
(“discrete
object”; 4:3
content)

Wear and
tear; change
of brightness
and color
balance;
permanent
screen lines.
Risk is High

Replaceable
with
different
monitor (17”
to 19”, 4:3,
slim black
frame)

Controlled storage
(climate, dust-free,
ESD-safe); source
back-up monitor (for
possible replacement);
clean regularly,
particularly when on
display

Chapter 22 --- Caring for Software- and Computer-based Art

10

Video
Connector
Cable

VGA
connecti
on from
PC to
Monitor

Transmits
image
signal

Short, hidden
behind monitor;
compatible with
computer output
and monitor input

Functional
(connection
type not
significant)

Wear and
tear/ Low
Risk

Replaceable
with other
hardware-
compatible
cables /
connector
types

No action needed
(VGA cables are still
available)

Operating
System

Window
s XP
(home
edition)

Runs
artwork
executable
(Director
.exe)

Capability to run
artwork .exe

Functional Obsolete; no
support /
security
updates, but
artwork is
offline / Low
Risk

Replaceable
with OS that
can run
artwork
.exe; or XP
can be run
on
emulation

Store back-up copy of
Windows XP in digital
repository

Application
(“the
Artwork”)

executab
le file
(.exe)
created
in
Macrom
edia
Director
8.0

machine-
readable
instruction
suited for
OS
Windows
XP

Contains
instructions and
data dictating
artwork behaviors
(animation speed,
colors, movement,
shapes etc.)

Functional;
aesthetic;
conceptual;
historical

Dependency
on OS
Windows XP,
no hardware
or network
dependencies.
Moderate
Risk

If it does not
run on
recent
Windows
OS (test),
run on XP
emulation.

Store back-up copy in
digital repository

Artist’s
project file

Project
file
(.dir),
Macrom
edia

Production
element,
required for
treatment
and

Allows
conservators /
programmers to
fully capture (and
potentially

Preservatio
n-critical
element

Proprietary,
obsolete,
limited
support.
Dependent on

Run legacy
Director in
emulated
legacy
environment

Store project file in
digital repository;
obtain and back up a
copy of legacy platform
Macromedia Director

Chapter 22 --- Caring for Software- and Computer-based Art

11

Director
8.0

examinatio
n

reconstruct)
artwork behaviors
and to update any
settings

obsolete
Director
platform.
High Risk

, if needed. 8.0

Chapter 22 --- Caring for Software- and Computer-based Art

12

22.2.4 Artwork Inspection

During an acquisition process, software-based artworks should be inspected in the conservation
lab to ensure that none of the needed deliverables are missing, that the work is fully functioning,
and to record the behaviors in the artist-supplied or artist-approved environment. The
examination and documentation of the hardware and software components may be undertaken by
the conservator themselves, or– depending on their skill set and the level of engagement of the
artist–through collaboration with the artist and/or programmers and other technical specialists.

Creating an Inspection Environment

In order to test the software delivered, an inspection environment - made of suitable hardware
and software - will be required. In some cases, this will be the hardware delivered by the artist. If
no hardware is received with the artwork, the examiner has to set this up. In some cases, this
environment will also be used for display. Ideally, the environment is created in collaboration
with the artist or by using an artist-supplied specification. If this is not available, decisions can be
made based on the format of the executable software (i.e., which operating system it will run on),
the period in which the artwork was produced, and any knowledge of the technologies used in its
production or previous displays. As the software environment is created through the process of
installing and configuring an operating system and other programs, the components that were
used to build it should be documented and archived.

In some cases, a desktop computer with the intended operating system, or even just a few
browsers, may be enough for an initial inspection. However, some works--regardless of whether
hardware was provided by the artist or not--may need to be fully installed to be correctly
inspected. There may be limitations as to how much of the work can (or must) be installed for
inspection purposes, namely for large works, or works that require a physical installation space
with certain characteristics.

For example, to inspect and test Subtitled Public (2005), a software-based artwork in the Tate
collection by Rafael Lozano-Hemmer, it is necessary to have a completely dark space with a
minimum size of 8x8 meters, and with an appropriate floor covering. Testing this software can
involve 3 or 4 people working for a week (see fig. 22.1).

<<INSERT FIGURE 22.1 HERE [TBM_Chapter_22_Software_Figure_1_Lozano-
Hemmer.jpg] Caption:
Figure 22.1 Inspecting and testing the software-based artwork Subtitled Public (2005) by Rafael
Lozano-Hemmer requires an 8x8m space and 3 to 4 people working for a week. Photo: Tom
Ensom

Chapter 22 --- Caring for Software- and Computer-based Art

13

Switching the Artist-provided Artwork on for the First Time

Before powering on a software-based artwork for the first time, it should be verified that an
identical copy of the software and date that comprise the artwork is stored safely. Any computer
or storage device can fail spontaneously at any time, potentially resulting in irretrievable data
loss or corruption. Supplying power to or booting a computer can in itself cause it to fail if it is in
poor condition. Risk increases with its age, hours of usage and improper storage conditions. A
computer that has been sitting on a shelf for five or ten years could suffer a hardware failure
upon being switched on (see 22.3.3). If a computer has been improperly stored, you may wish to
ensure that internal components are fully dry and clean before use. Dust can be removed with a
can of compressed air, an ESD-safe vacuum cleaner or equivalent, while ingrained dirt and
debris can be removed with isopropyl alcohol and a lint-free cloth.

Especially if the software-based artwork runs on an artist-provided computer, a backup of the
data contained on the computer (not just the files that make up the artwork) should be created.
The ideal back-up is to create a disk image of the entire computer's storage devices, which
includes all installed systems and applications. Chapter 14 provides a detailed overview and
guidelines on how to create disk images. The data must be safely backed-up (see Chapters 8 and
13), and only then should the computer be turned on. At this point any other related hardware

Chapter 22 --- Caring for Software- and Computer-based Art

14

(e.g., peripherals such as cameras or joysticks) should be connected, so that the full functionality
of a work can be tested and documented.

Before the artwork itself is run, it is advisable to use built-in system tools such as the system
report to create basic documentation of the hardware and software environment (see 22.3.2). This
way, the configuration is captured directly from the system, rather than derived from inspection
or manuals, and before any operational failure may be triggered by executing the artwork.

Running and Inspecting the Software and Hardware

Once the system documentation is created, the software can be run. Especially when inspecting
older, fragile artworks that have a higher risk of failure, this moment should be considered a
valuable opportunity to create video documentation of the work running as well as of the user
interface on the computer. When inspecting the software and hardware running, collection
caretakers should aim to generate answers to questions like the following:

● Are the artist-supplied components (equipment, software, and data) complete and
working correctly?

● Are we missing any crucial information necessary to run the piece, such as passwords?
● Which software is employed by the artwork, in which version, and configuration and

configuration?
● What is the setup and calibration process required to run the software correctly?
● When running correctly, what is the software supposed to do functionally and

aesthetically (what are its audiovisual, kinetic and/or haptic behaviors, including colors,
image characteristics, movement, speed, duration, data input, interactivity etc.)?

Answering some of these questions may require an in-depth analysis of the artwork as described
in 22.3.

Understanding the Work-defining Properties

The concept of “work-defining properties'' was introduced by Laurenson (2006) and has since
been widely adopted in the time-based media conservation community. It serves to identify the
properties of the artwork — such as hardware characteristics, audiovisual content, installation
components and spatial parameters— that define its identity, are essential for its uncompromised
integrity and should be preserved. For software-based art, Laurenson (2014, 24) expanded these
general properties to include the appearance (including sculptural hardware components),
behaviors, and modes of interaction. In addition to these discernible characteristics, significance
in software-based art has also been attributed to its original source code, namely the artist’s or
programmer’s choice of technologies, programming languages and coding styles (Engel and
Phillips 2019, 181).

Developing an understanding of the artwork's work-defining properties is a critical step in the
risk assessment process. This can be supported by a wide range of information, including
interviews with the artist (and other stakeholders), technical specifications, source code and
documentation of past installations, an understanding of which will be informed by the
conservator's own knowledge and experience. One approach to this is to identify work-defining

Chapter 22 --- Caring for Software- and Computer-based Art

15

properties at the component level (see Table 22.1). However, care should be taken to ensure that
these are not interpreted as fixed or authoritative. Attaching significance can involve subjective
judgements and a complete picture of the artwork's identity will continue to emerge throughout
its life.

22.2.5 Conducting Risk Assessment for Preservation

Risk assessment supports the development of preservation strategies and helps to prevent
damage and loss to objects and collections. The concepts of risk assessment and risk
management are widely used in cultural heritage conservation as a way of identifying hazards,
threats and risks for specific objects and collections as well as evaluating the impact of those
risks and finding ways to mitigate them. The ICCROM - International Centre for the Study of the
Preservation and Restoration of Cultural Property defines risk as “the chance of something
happening that will have a negative impact on our objectives'' (ICCROM 2016). Building on
these practices, Agnes Brokerhof (2011) developed a risk assessment methodology for
contemporary art installations, which also proved helpful for software-based art (Falcão 2010).
Unlike traditional fine art conservation, where change is commonly seen as loss, technology-
based artworks often must change to retain their functionality. Moreover, the possibility of full
recovery, by which damaged or failing components can be replaced without change to the work-
defining properties of an artwork, means that recoverability, or the balance between technical
feasibility and affordability, becomes a key factor when identifying and prioritizing risks and
devising preservation strategies.

The following section explains how to identify and evaluate risks for the conservation and
display of a software-based artwork. In the process, each component’s significance for the
artwork is assessed, including its functional, aesthetic, or conceptual significance (see Table
22.1). Then, its risks of failure and loss, and its potential recoverability from a conceptual and
technical perspective are identified. A similar risk may impact different components in different
ways, depending on their significance and ability to recover from failure.

This risk assessment is best reviewed and agreed upon with the artist(s), creator(s), curators, and
other stakeholders to build consensus around preservation, maintenance, and display strategies.

Understanding and Attributing Significance

‘Significance’ refers to “the values and meanings that items and collections have for people and
communities'' (Russel and Winkworth 2009) and reflects the value attributed by different
stakeholders; a conservator and an artist may value a specific component differently. Moreover,
attributed significance to the same component may vary in the context of different artworks: an
ordinary-looking desktop computer may carry a purely functional significance for one artwork
but be of conceptual significance in the context of another artwork, e.g., if the artist chooses to
display it on the gallery floor. The computer could also carry historic value if it represents a
significant point in art history, the history of technology, or a key moment in the artist's practice.
Artwork components often combine several types of significance at once, in varying degrees: a
computer could have a functional and a historic significance, but the functionality might be
considered more significant for the artwork than its agency in representing a certain point in

Chapter 22 --- Caring for Software- and Computer-based Art

16

history. One way of attributing significance is through an understanding of the artwork’s identity
and work-defining properties.

Table 22.1 exemplifies how significance attribution (as an integral part of the risk assessment
process) considers all hardware and software components, including monitors, cables, operating
systems and associated networks and databases.

Especially when planning conservation treatments (see 22.4), it may be necessary to break down
software and hardware components further, e.g., to consider the significance of a particular
graphics card inside a computer, or the programming language underlying the software. For
example, the HTML code in JODI’s web artwork wwwwwwwww.jodi.org %Location (1995)
does not only functionally create the page, but also carries conceptual and aesthetic significance,
as it is written so that the HTML code takes the form of a drawing (fig. 22.2).

<<INSERT FIGURE 22.2 HERE [TBM_Chapter_22_Software_Figure_2_Jodi.png] Caption:
Figure 22.2 The webpage (left) and underlying HTML code (right) for the web artwork
wwwwwwwww.jodi.org %Location (1995) by JODI. Screenshot: Patrícia Falcão

The relative significance of artwork components is the basis for their subsequent assessment of
recoverability. For instance, if a computer’s significance is mostly functional, the spectrum of
options for recovery–from careful storage to complete replacement–are available. If it is deemed
to have aesthetic significance it may be replaced by other means, as long as the replacement is
invisible. If the value of the computer is deemed to be conceptual, the options for preservation
may be limited to storing the original computer, like a traditional sculpture–in extremis, to the
detriment of its functionality.

Chapter 22 --- Caring for Software- and Computer-based Art

17

Generally, in the context of time-based media art, high significance is attributed to functionality
with the aim to preserve a functioning artwork, often overriding historical or aesthetic value of a
component by allowing for its replacement. In other words, faced with a work that stopped
functioning, many, but not all, artists will be happy to make changes to maintain that
functionality, and often to technically improve it. The latter may raise ethical concerns, as these
changes may compromise historical or aesthetic significances.

It is important to highlight that different collections, communities and other stakeholders may
value different aspects of a work. For instance, early computer art, by artists such as Frieder
Nake or Vera Molnar, has long been collected by museums only in its outputs as prints. The
value of the underlying algorithms has been neglected in that context, but it was valued at the
time of creation by the artists themselves and journals such as "Computer Graphics and Art"
(Della Casa 2012), which chose to publish that code. Currently, the community around the
Recode project is re-using that code and translating it to Processing (Recode Project, n.d.).

Identification of Hazards and Estimation of Associated Risks

The agents of deterioration for traditional objects of cultural heritage include physical forces,
fire, water, criminals, pests, contaminants, light and UV radiation, incorrect temperature,
incorrect relative humidity, and custodial neglect (Waller 1994). In spite of the misleading
discourse about the immateriality of digital objects, all of these hazards are relevant and will
apply to data carriers (even servers in “the cloud”), equipment, and any other physical
components of a software-based artwork. Brokerhof (2011, 97) identified further tangible and
intangible agents of deterioration for media installations: electricity; wear and tear; plastics and
metals degradation; information dissociation; malfunctioning and misinterpretation. Further to
these, the digital preservation community has established additional hazards specific to software,
and more broadly digital objects, such as obsolescence, data loss, rendering issues or
inaccessibility (Digital Preservation Coalition (DPC) 2022). Fino-Radin identified three primary
risks faced by new media artworks in the Rhizome collection: diffusivity (i.e., a tendency to
reference external data sources), data obsolescence, and physical degradation (Fino-Radin 2011).

The magnitude of a specified risk depends on three factors: the likelihood of a hazard happening,
the impact of that hazard, and the possibility of recovery. For example, the risk that a file is lost
if it is stored on a single hard-drive is very high, as it is known that hard-drives fail, sooner or
later. If copies of that file are stored on multiple storage devices, the risk of losing that file is
much lower.

Assessing Recoverability and the Impact of Obsolescence

Even before hardware and software components fail, they may be affected by obsolescence, “a
condition that affects an element or system when it or its parts are no longer commercially
available or supported by the industry that initially produced them” (Falcão 2011). It is
important to understand that hardware or software does not stop working because it is obsolete.
The issue is that for replaceable components, it becomes increasingly difficult and expensive to
repair or replace them once they are obsolete, and the increasing incompatibility of obsolete
hardware and software with newer environments compromises their (correct) function. More

Chapter 22 --- Caring for Software- and Computer-based Art

18

staff time must be invested into sourcing replacements and dwindling specialty expertise is
increasingly costly. For factors that drive hardware failure and obsolescence, see 22.3.3, and for
software obsolescence, see 22.3.7. For an introduction to treatment responses to obsolescence,
see 22.4.

A decision-making approach can support the process of assessing the recoverability of artwork
components and understanding how obsolescence impacts their recovery in the context of their
system. The example in fig. 22.3 explores the recoverability of an obsolete SCSI (pronounced
“scuzzy”) printer component of a software-based artwork, the different options for its recovery,
and how after a certain point this may drive the need to change the whole system.

<<INSERT FIGURE 22.3 HERE
[TBM_Chapter_22_Software_Figure_3_RecoveryDiagram.png] Caption:
Figure 22.3 Recoverability assessment, here of an obsolete SCSI printer in the context of a
software-based artwork. Diagram: Patrícia Falcão

Assessing recoverability during the acquisition process helps to identify the deliverables needed
to support the artwork’s recoverability in the future. In this example, the need for spare SCSI
printers and printer parts was identified as a recovery option until they can no longer be sourced.

Chapter 22 --- Caring for Software- and Computer-based Art

19

Once printers with SCSI connections are no longer available, the software will need to be
changed to output to USB printers, or the common connection at that point. Having the source
code will make this intervention in the code much easier (see 22.4).

In summary, the main questions regarding recovery/replacement are:

● Is the element replaceable?
● Will its replacement lead to other changes to the system?
● Can an appropriate replacement be found or produced?
● Do we have the means (conservation elements, expertise, and funding) to produce that

replacement?
● Is there a preferred approach if the element cannot be replaced? If the work cannot be

recovered, is exhibiting it as documentation an option?

22.2.6 Collecting Preservation-relevant Components, Information and Rights

The sustained collection life of a software-based artwork critically depends on the hardware and
software components, and on information and rights that the collector receives from the artist or
gallery. Time-based media conservators play an active role in negotiating and obtaining
deliverables. The collection team should establish the deliverables in close dialog with the
artist/gallery and list them in the purchase agreement (see Chapter 17 Appendix). This way, the
transaction is clearly defined for both parties, and funds can be released upon successful quality
and condition control of the received deliverables.

Artist-provided Deliverables

Acquisition deliverables for software-based artworks depend on the type of artwork and its
technological dependencies, the artist’s preferences, a collection’s resources, and the
preservation awareness of the involved parties. In general, the collection goal is to enable the
new owner to responsibly care for the work, to maintain and update it, to examine and treat it and
thereby to manage its change without compromising its integrity–even if the artist is not or no
longer available to consult. To support this transition of care and responsibility, the artist should
be expected to supply:

● A full, running version of the work, including all hardware and software components.
This set-up acts as an artist-approved reference of how the work should appear and
function. If the artist does not supply all components, the collector should source or build
the set-up and have it approved by the artist at the point of acquisition, or the first gallery
display of the work.

● Technical specifications for hardware that is not supplied and should be sourced by the
collection, including specifications on the future replacement of supplied hardware.

● Comprehensive installation instructions. This includes detailed instructions on how to
install the artwork in a variety of spaces and conditions; how to install, configure and run
the software; how to handle hardware and software maintenance and failures
(troubleshooting, replacements, updates); and whom to contact if specialty expertise,
service or supply is needed.

Chapter 22 --- Caring for Software- and Computer-based Art

20

● Stockpile of hardware or replacement parts, e.g., in the case of rare legacy equipment or
custom-made parts.

● A complete back-up copy of the software required to run the artwork, including
executable files; software dependencies; firmware.

● Where executables can be produced for multiple operating systems, e.g., a Unity
executable can be created for MacOS, Windows or Linux environments - an artist can be
asked to produce executables for one or more operating systems.

● For web-based works, it is important to agree on who is responsible for hosting the
website, and ideally the collector will have a full back-up of the site, even if not hosting
the site themselves. The rights to any significant domain must also be acquired at this
stage.

● The source code of the project, as well as file directories, text files, media assets,
libraries, project files (e.g., for a development environment such as Flash, Director,
Xcode or Unity, or 3D print files etc.).

● Granting of rights (via purchase agreement or non-exclusive license): the artist should
grant the collector the right to show, publish and preserve the artwork; to create copies of
the work for the purpose of preservation and access; and to treat the work, e.g., to migrate
or update the code or project file (preferably in consultation with the artist, as long as the
artist is available) to sustain the life of the artwork.

“Obtaining the uncompiled, human-readable source code in addition to the compiled, machine-
readable executable file (...) is perhaps the most crucial act of preventive conservation.” (Engel
and Philips 2019,192). Section 22.3.6 shows how source code analysis is a critical tool for
identifying artwork behaviors, especially randomized, generative, and other behaviors that
cannot be quantified and qualified through human observation. Source code is also often needed
in the long term to maintain, update, or migrate a software-based artwork (see 22.4.8), and to
ascertain software and systems dependencies that the conservator must take into account for
conservation and future treatment.

However, collectors may not always succeed in their negotiations to obtain the source code in
addition to the executable file. While some preservation-conscious artists like Rafael Lozano-
Hemmer, Jürg Lehni and Cory Arcangel share their code with collectors or GitHub communities,
other artists feel more protective of it. Contractually agreeing on who has access to the source
code, and for what purposes, can be very helpful in alleviating any concerns and obtaining an
artist’s consent. Not having access to the source code increases the risk of losing access to the
artwork in the future. Although it does not preclude preservation, intervention may be
significantly more technically challenging and costly without the source code, requiring reverse
engineering of the software (see 22.3.6).

Sourcing and Creating additional Components as an Act of Preventive Conservation

Additional measures are recommended to be taken by the collector to broaden future
preservation options:

Chapter 22 --- Caring for Software- and Computer-based Art

21

● Create an identical exhibition copy of the whole artwork system, both hardware and
software. This limits the use of the artist’s original over extended periods of time,
prolonging its life as a reference for the creation of new copies and systems.

● Create a disk image (see Chapter 14), either of the original computer or created from
scratch by installing the artwork software on a disk image with the correct software
environment. This supports access not only to the artwork software but to the whole
software environment that surrounds it.

● Gather supporting software in its artwork-relevant versions, including production
software (e.g., Adobe Flash, Visual Basic, Max MSP, Processing), media playback
software (e.g., RealPlayer, Adobe Flash plug-in), operating systems, libraries, plug-ins,
and drivers. In some cases, the software may not be available to purchase any more and
will have to be sourced through the second-hand market.

● Record details of license keys and/or account information required to access or update
these components, where applicable.

● Extract and store media files separately outside of the software (e.g., image or sound files
animated on a Director timeline) to reduce the risk of access loss and to enable future
reconstruction of the artwork with different technologies.

● If the collector is unable to obtain the source code, future examination and treatment may
depend on decompiling the artist-provided executable. Even if this path does not
guarantee success (Engel and Phillips 2019, 192), the collector should source the
appropriate decompiler and compiler software immediately as an act of preventive
conservation. The compiler software is not artwork-specific but may be difficult to obtain
in the future when it might become necessary to recompile the artwork.

● Create comprehensive audiovisual documentation such as a video recording, narrated
screen recording or similar to capture the artwork’s intended appearance, experience,
behaviors, and functions.

If other preservation-relevant deliverables are not received, the collector is well advised to step
in and source or create these components on the artist’s behalf (and seeking artist approval,
where applicable), including stockpiling equipment and replacement parts or sourcing software
the artwork depends on. For handling proprietary software in the context of preservation, the
Software Preservation Network published a report on how fair use may be applied to software
preservation (ARL 2019).

22.3 Understanding Your Software-based Artwork

In order to effectively care for a software-based artwork, conservators will need to be able to
identify the technologies used, make sense of their role within the system of the artwork, and
understand how these technologies are likely to be impacted by the passing of time. Through a
process of analyzing and documenting their findings, conservators should aim to capture critical
information to guide preventive conservation now and treatments in the future. In this section the
authors aim to support the in-depth examination process by providing an overview of commonly
encountered hardware and software technologies, their dependencies, and implications for
preservation. Key failure and obsolescence risks are explored, and practical guidance on
approaches to analysis and documentation are provided.

Chapter 22 --- Caring for Software- and Computer-based Art

22

Software-based artwork systems are made up of two types of components: hardware and
software. Hardware components are electronic devices which are capable of processing and
responding to instructions (or other inputs) and generating tangible outputs (such as images on a
computer monitor). The hardware associated with a software-based artwork will usually consist
of at least a digital computer containing a microprocessor. This is an integrated circuit — a
circuit contained on a single piece of semiconductor material (also known as a chip) — capable
of processing binary data through logical and mathematical operations. Software components
consist of encoded instructions and associated data that tell a computer what to do. These
instructions are written in programming languages and can be stored and run by the computer on
demand.

22.3.1 What is Hardware?

Hardware consists of the physical, electronic components of a computer system. Modern
computer systems make use of an array of hardware components, which together with software
components, turn instructions and other inputs into tangible outputs. The purpose of a system
will dictate the kinds of hardware components used. For example, a computer used to run virtual
reality software will need to incorporate powerful graphics processing hardware and attach to
specialized peripherals, while a computer that can fit inside a smartphone will need to use
components of a reduced size and consequently, with reduced performance.

In many cases, the hardware used to realize a software-based artwork may include use of display
equipment common to other forms of time-based media. For example, an artwork may utilize
monitors or digital projectors to display moving images alongside audio equipment to reproduce
sound. These kinds of hardware are sometimes referred to as peripheral devices in the context of
computing. The primary focus of this section is on computers, as they are essential to the
execution of the software and thus central to the realization of the artwork.

<<INSERT FIGURE 22.4 HERE
[TBM_Chapter_22_Software_Figure_4_CompFormFactors.png] Caption:
Figure 22.4 Various types of computers. Clockwise from top left: iMac G3; custom desktop
tower; Raspberry Pi Model A single-board computer; Arduino Uno Rev3 microcontroller; off-
the-shelf COMPAQ desktop; Mac Mini. Photo: Tom Ensom

Chapter 22 --- Caring for Software- and Computer-based Art

23

Conservators are likely to encounter a diverse array of computer hardware when caring for
software-based art. In this section we introduce common types of computer hardware and
consider why and how they are used by artists. Particular preservation risks to hardware are also
highlighted, but it is important to note that all hardware is at risk of loss in the long-term (see
22.3.3).

Common Computer Components

Computers are made up of electronic circuits, and can employ a single circuit board, or many
circuit boards connected via suitable interfaces. Desktop computers are typically made up of
many removable components connected to the motherboard via internal (concealed within the
computer case) and external (accessible on the exterior of the case) buses. This approach means
that individual components can be replaced or upgraded without having to replace the entire
system. As computer size decreases, there is a higher likelihood of components being soldered
directly onto a reduced number of circuit boards. Microcontrollers represent this at the smallest
extreme, where all of the hardware components required for a particular function can be
contained on a single circuit board, or even a single integrated circuit. This offers much reduced
size but makes replacing or repairing individual components more challenging and alters
prospects for maintenance in the course of conservation treatment (see Section 22.4).

Chapter 22 --- Caring for Software- and Computer-based Art

24

Despite the wide variety of uses of computers and the myriad forms they take, there are certain
common components found across modern computers and which are frequently encountered
when caring for software-based art. These are summarized in Table 22.2, as a reference for the
use of this terminology in subsequent sections. While the components listed are framed in the
context of separate devices contained in a desktop computer, many of the components listed can
also be found built into a single circuit board or integrated circuit.

Table 22.2 Description of common computer components and the key specification information
to capture when documenting their specification.

Component Description Key specification
information

Motherboard The motherboard is the circuit board to
which the computer's other hardware
components connect and through
which they communicate. Also known
as a Mainboard or Logic Board.

Model
Supported interfaces

Central Processing
Unit (CPU)

The CPU carries out operations based
on instructions written in computer
code. A CPU implements a specific
instruction set architecture (ISA)
which defines the kind of instructions
that can be executed, e.g., x86-64 in
modern desktop computing, or
ARM64 in mobile computing.

Model
Architecture
Core number
Clock speed

Random Access
Memory (RAM)

RAM is volatile memory to which
programs and data are loaded when
they are executed or used, allowing for
rapid access by the CPU. The
information in RAM is lost when the
machine is turned off or re-booted.

Model
Capacity

Storage Devices Devices for storing and accessing
digital data. At least one storage
device within a computer will contain
a software environment consisting of
an operating system, software
programs and user data.

Model
Capacity
Host connection interface (e.g.,
PATA/IDE, SATA, SCSI)

Graphics
Processing Unit
(GPU)

A GPU is a device for rendering 3D
graphics. While sometimes taking the
form of standalone expansion cards,

Model
VRAM (Video RAM)
Host connection, if removable

Chapter 22 --- Caring for Software- and Computer-based Art

25

GPU functionality can also be
integrated into a CPU.

(e.g., AGP, PCIe)

Network Devices Devices which support or extend the
computer's networking capabilities.

Model
Host connection (e.g., AGP,
PCIe)
External interfaces (e.g., 8P8C
ethernet)

Audio Devices Devices which process, route and/or
generate audio signals such as sound
cards or audio interfaces.

Model
Host connection (e.g., PCIe,
FireWire 400, USB 3.0)
Supported input and output
connections (e.g., 3.5mm jack,
RCA)

Power Supply
Unit (PSU)

Device which routes power to
components that require it.

Model
Wattage

Peripheral Devices Removable devices which extend the
functionality of the computer system
such as cameras, sensors, human
interface devices.

Host connection interface (e.g.,
USB 3.0, FireWire 400)

Desktop and Laptop Computers

Computers can be manufactured to conform to a variety of form factors: a term for
characterizing different size and shape profiles. Full-size desktop computers incorporate discrete
hardware components in a relatively large case and, as the word desktop implies, are intended for
home and office use. They contain full size, off-the-shelf hardware components (which are
usually easily accessible via a removal panel) and therefore tend to be the most powerful and
favored for high performance applications, such as real-time 3D rendering. The components of
an example desktop computer are annotated in Figure 22.5 below. Desktop computers can be
bought prebuilt or built to a custom specification using off-the-shelf components either by the
artist or a third-party supplier. In the event that an internal component fails, it can usually be
removed and replaced with a similar component (if available).

<<INSERT FIGURE 22.5 HERE [
TBM_Chapter_22_Software_Figure_5_CompComponentsAnnotated.png] Caption:
Figure 22.5 The side panel of this desktop computer has been removed to reveal the internal
components: 1) Heatsink and fan array mounted above the CPU; 2) Four sticks of RAM; 3)
Optical drive mounted in a 5.25” drive bay; 4) GPU attached to a PCIe bus on the motherboard;
5) 2.5” Solid State Drive; 6) 3.5” Hard Disk Drive; 7) Motherboard; 8) PSU. Photo: Tom Ensom

Chapter 22 --- Caring for Software- and Computer-based Art

26

Small form factor desktops contain similar components to full-size desktops, but with a much-
reduced physical size. Their smaller size sometimes comes at the cost of maintainability, as
components can be difficult to access or in some cases are soldered directly onto the
motherboard. They are typically sold as mass-produced, pre-built units, such as the Mac Mini or
Intel NUC ranges. While they may be less performant than full-size desktop computers, their
smaller size means that they can be more easily concealed in an exhibition space. Laptops often
use similar components to those found in small form factor desktop computers, while also
integrating essential peripherals into the case such as a screen, keyboard, and trackpad. They can
suffer from similarly reduced maintainability.

Microcontrollers

Chapter 22 --- Caring for Software- and Computer-based Art

27

Microcontrollers are small computers contained on a single microchip (an integrated circuit or
IC). A microcontroller IC will contain at least a CPU but may also incorporate a small amount of
RAM and persistent storage. The latter may be programmable and modifiable to some extent,
depending on whether it uses ROM, PROM, EPROM, EEPROM or flash memory. Unlike a
desktop computer, a microcontroller does not run an operating system, so it can only be
programmed by connecting it to another computer. Microcontrollers can carry out a reduced set
of possible operations (described in the datasheet for that model) in comparison to a
microprocessor-based, general-purpose computer. For example, a microcontroller might be used
to control the movement of a servo motor or an array of lights. Microcontrollers are likely to be
chosen by an artist where a low cost and small size computer is needed to implement a simple
control system.

A microcontroller IC needs to be built into a circuit board with other components to be used. To
simplify the process of working with a microcontroller, circuit boards containing a
microcontroller IC and other components are manufactured and sold as units (for example, the
Arduino (see fig. 22.6) and Basic Stamp series. These are known as single-board
microcontrollers. These units make use of an integrated interface (e.g., USB, RS-232) and
development software to simplify the process of loading instructions onto the device. This
contrasts with a standalone microcontroller IC, where compiled code must be loaded using a
specialized device — known as a programmer — connected to a host computer. The latter is
rarely used by artists today due to the specialist requirements for customization in comparison to
single-board microcontrollers but may be encountered where an artist has worked with an
engineer, particularly in older artworks before the wider availability of single-board
microcontrollers.

<<INSERT FIGURE 22.6 HERE [
TBM_Chapter_22_Software_Figure_6_ArduinoUno.png] Caption:
Figure 22.6 Arduino Uno Rev3 SMD microcontroller. This model uses an integrated
ATMega328P microcontroller IC and USB connection. Photo: Tom Ensom

Chapter 22 --- Caring for Software- and Computer-based Art

28

Arduino, microcontrollers, and related technologies can play two roles in a conservators’ work:
as artistic medium of artworks that enter a collection and need to be conserved; and as a
conservation strategy when migrating other works to this technology for preservation purposes.

On microcontrollers:

sasha arden: Microcontrollers can play two roles in a TBM conservators’ work. I was
trying to think of all of the artworks I have encountered or know of that definitely use
microcontrollers. And I came up with just as many conservation projects that I've been
involved in or know of that use microcontrollers as a treatment. So, it's about half and
half.

Mark Hellar: I would say that each artwork is different, right? So, some artworks have
microcontrollers that talk to the internet, some have microcontrollers that use Bluetooth
and there's a vast array of sensors. So, we could say, “Oh, it's an artwork with a
microcontroller”, but I think it might make more sense to say, “What does this artwork
do? And what are the significant properties?” And then I could take it out of this
paradigm that this is a microcontroller-controlled work and, I'd spend time with the
artwork to really understand what we would need to do and what elements we would
need to pursue to care for this artwork.

sasha arden: It is wise to document one's own treatments using micro-controllers as well
as documenting artworks that use them. I record the hardware that I use, the make and
model of the microcontroller and I create a circuit diagram and list all of the electronic
components that were in the external circuit. I make wiring diagrams of how all those

Chapter 22 --- Caring for Software- and Computer-based Art

29

things were connected and create a text file of the program that I wrote, and I also take a
photo as a kind of a screenshot, when I can.

Mark Hellar: There are a number of tools to help with this process. They're known as
“PCB tools” which means “printed circuit board design tools”. What you do is you
create a schematic and there are standard symbols for electronic schematics. Then you
can convert them so that you can lay out a printed circuit board and have that
refabricated, for example to help you to migrate from one microcontroller to another.

sasha arden: Also, even just having a standard electrical schematic would be enough for
someone who can read that to build a new circuit by hand.

Mark Hellar: In terms of proprietary and open-source microcontrollers, you need to
consider, “What does that mean in a hardware context?” Keep in mind that the Arduino
project publishes all of the schematics and the source code so you could just go out and
get some parts and put together your own Arduino on a breadboard and you can just
download the source code and program the bootloader for it. But that is clearly not true
for an iPhone! (laughter)

From interview with sasha arden and Mark Hellar, October 26, 2020 (a rden and
Hellar 2020)

Microcontrollers should be well-documented to ensure their function is understood and could be
recreated. Care should be taken to ensure that any code stored on the IC or board is also stored
and preserved separately, as it is not possible to create disk images from microcontrollers and it
may be difficult to retrieve data from them at all once it has been transferred. Microcontrollers
are also harder to maintain than desktop computers, as components are usually soldered directly
to the circuit board, making replacement difficult.

Single-Board Computers

Single-board computers incorporate a set of discrete hardware components on a single circuit
board, but in contrast to a single-board microcontroller include a standalone microprocessor
rather than the microcontroller IC. While they can look superficially similar to single board
microcontrollers, they are actually closer to desktop computers in terms of purpose. The
increased sophistication of the components in comparison to a microcontroller means that they
are suitable for use as general purpose computers, can be easily connected to computer
peripherals (such as a monitor and keyboard) and can run desktop operating systems. Single-
board computers are found inside smartphones and media players. They are also available as
standalone devices, such as the Raspberry Pi series (see fig. 22.7). These may be used by artists
where the complexity of their software exceeds that which could be supported by a
microcontroller (such as running an operating system or using a display output) but a similarly
reduced size or lower cost is required.

Chapter 22 --- Caring for Software- and Computer-based Art

30

<<INSERT FIGURE 22.7 HERE [TBM_Chapter_22_Software_Figure_7_RaspberryPi.png]
Caption:
Figure 22.7 Raspberry Pi Model A Revision 2.0 single-board computer. This model uses a
Broadcom BCM2835 ARM CPU and includes significantly more input/output options than a
single-board microcontroller, including HDMI, composite video, 2x USB 2.0 ports, ethernet and
3.5mm audio. Photo: Tom Ensom

As for microcontrollers, single-board computers are difficult to maintain as components are
soldered directly onto the circuit board and are not easily replaceable. The recoverability of code
and other stored data is highly dependent on the device and nature of the storage medium. Data
may be retrievable where it is contained on removable storage media (e.g., an SD card or USB
stick), but storage integrated into the board may be very difficult to access.

Peripherals

The capabilities of a computer may be extended by attaching peripherals, easily removable
hardware devices which extend the functionality of the host system by providing additional
inputs or outputs. Examples of frequently encountered peripherals in software-based art are
monitors, cameras, sensors, networking devices and human interface devices (such as keyboards,
mice, and controllers). Each will have its own unique characteristics and understanding its

Chapter 22 --- Caring for Software- and Computer-based Art

31

importance within the larger system will have to be approached on a case-by-case basis. It is
generally important to identify the interface used to connect the peripheral (e.g., RS-232,
Firewire, USB) as the obsolescence of these interfaces is a common source of long-term
compatibility problems. The term “peripherals” overlaps with what we typically refer to as
display equipment in time-based media conservation. This is particularly so for software-based
artworks with video outputs, which may make use of digital projectors, TV monitors and audio
equipment commonly encountered in the care of video artworks (see Chapter 18).

Servers and Networking

While networking hardware overlaps with the types of hardware described in the preceding
sections, it is discussed here in further detail due to its significance in networked and web-based
artworks. A network is a connection between two or more computer systems through the use of
shared communication protocols. The connection allows the connected systems to share and
exchange resources, such as files and web pages. Networks can operate at a variety of scales,
ranging from a local area network (LAN) between devices in physical proximity, to the Internet;
the global network of interconnected networks which provides access to the World Wide Web.
Networking capabilities may be provided by components built into computers (such as ethernet
and Wi-Fi adapters) and extended through attached peripherals (for example, a network switch
used to route LAN traffic between several connected computers).

Servers are computers which are used to serve content to other computers over networks. One
computer — a client — connects to another — the server — over a network, allowing for the
exchange of information between the two. Servers can be used to provide access to web content,
route email, or provide access to databases and computational resources. Servers contain similar
hardware components to desktop computers. While they may use a form factor which allows for
them to be rack-mounted, any computer can be used as a server providing it has networking
capabilities and can run a suitable operating system. Artists may operate their own servers or use
servers provided by a third-party service provider. Where servers are employed, they can present
a significant long-term preservation risk if not properly managed. Providing long-term public
access to servers (which may be required for web-based artworks) requires that the server be
maintained and updated, or otherwise risk loss of access and reduced security. The extent to
which it is possible or desirable to move servers under the control of an institution is one
important factor to consider.

Custom Hardware

Artists may use custom-built hardware to realize software-based artworks. Custom hardware is
likely to be unique and can be contrasted with off-the-shelf hardware, which is industrially
produced and sold at volume. Instead, bespoke circuit boards are created to meet a unique
specification. These can be built by hand using a fixed base (such as breadboard or stripboard)
and suitable electronic components. They can also be designed using electronics design software
and sent to a third-party for manufacture and assembly. As custom hardware is likely to have
been made to carry out a specific purpose within a software-based artwork, understanding it, and
having the necessary documentation to rebuild it, if necessary, is very important.

Chapter 22 --- Caring for Software- and Computer-based Art

32

Artist Jeffrey Shaw has frequently used custom hardware in his work, particularly bespoke
human interface devices. For example, in The Legible City, 1989-1991, gallery visitors ride a
bicycle mounted in front of a projection screen to navigate the virtual environment projected in
front of them. This work relies on a custom-made analog-to-digital converter, the documentation
and replication of which was a critical issue in a treatment of this undertaken by ZKM
(Lintermann et al. 2013).

In addition to being built from scratch, off-the-shelf hardware can be modified by artists in order
to alter the way it functions. Understanding the nature of the intervention and how it might be
recreated is very important if artworks incorporating modified hardware are to be successfully
preserved. Cory Arcangel is an American artist who has worked extensively with hardware
modification, particularly his interventions in video game technology. This has included the
modification of video game console controllers so that they self-play, in the case of Various Self
Playing Bowling Games (2011), and a video game cartridge in Super Mario Clouds (2002)
(Magnin 2015).

22.3.2 Analyzing and Documenting Hardware

Gathering information about hardware components should be done while the system is
operational. Capturing the precise model and other relevant information (see Table 22.2) for all
components will help to create duplicate back-ups, source future replacements, and define
emulation configurations (see 22.4).

Gathering Computer Component Information

Off-the-shelf computers such as Apple’s Mac Mini series or Intel’s NUC series may have well-
defined component sets associated with the specific model. In addition to capturing the
manufacturers’ specifications, the computer should be examined directly, e.g., to retrieve a list of
components (including attached peripherals, operation system and installed software). Most
contemporary operating systems include built-in tools, such as those packaged with Windows 10
and MacOS, both called System Information (see fig. 22.8). Third-party tools, such as HWiNFO
for Windows (Malik n.d.), can provide more detailed information. Where possible, choose
software tools capable of exporting the information they gather in a widely understood, non-
proprietary format such as plain-text, XML or HTML. Storing analysis outputs in these formats
increases the chances that this information remains accessible in the long-term. For
microcontrollers and single-board computers, the relevant datasheet from the manufacturer
should be located and retained.

<<INSERT FIGURE 22.8 HERE [
TBM_Chapter_22_Software_Figure_8_SystemReport.png] Caption:
Figure 22.8 The report produced by the built-in System Information tool on a Windows 10
laptop provides a detailed account of all hardware and software components. Screenshot: Patrícia
Falcão

Chapter 22 --- Caring for Software- and Computer-based Art

33

If software tools cannot be used, e.g., in older computers where analysis tools may not be
available, a visual inspection of the physical components inside the computer can produce model
numbers and/or serial numbers, which can then be cross-referenced with other resources to
gather more detailed information. The interior inspection of the computer is also an opportunity
to assess its condition and identify problems such as dust build-up or leaking capacitors. The
contents of some computers may be difficult to access due to the way they have been assembled
or the absence of screws. For example, the internal components of some Apple iMacs can only
be accessed by prising off the glued-on LCD panel. Careful consideration should be given to
balancing the possibility of damaging the computer against the value gained through this
intervention. When handling hardware components with exposed circuitry, there is a risk of
damaging components through electrostatic discharge (ESD). To avoid this, use a combination of
ESD mitigating equipment such as anti-static mats, wristbands, and gloves (see Chapter 14 for
further guidance).

Documenting Peripherals and Custom Hardware

Peripheral devices, such as cameras, sensors, human interface devices (e.g., controllers) and
other off-the-shelf hardware, should be recorded — including noting and photographing the
interface used to connect to the computer. Any manuals or other relevant documentation
available from the manufacturer should also be collected where possible. Peripheral hardware

Chapter 22 --- Caring for Software- and Computer-based Art

34

may be accessed using specific drivers, so it is important that this software be identified,
documented, and appropriately archived.

Custom-made hardware devices require particularly detailed documentation. As a general rule,
aim to gather enough information that they could theoretically be reconstructed from scratch.
Technical documentation to seek includes schematics, circuit diagrams and bills of materials. If
this documentation is not available, as much of it should be generated as possible at the point of
acquisition, ideally in collaboration with the artist and inspecting the circuits as necessary. It is
also important to identify whether hardware has been programmed with custom code that cannot
be easily retrieved (e.g., a microcontroller), as this should be acquired separately. If not
available, measures can be taken to retrieve it using interfaces attached to the microcontroller or
to reverse engineer its function through use of a logic analyzer (Fino-Radin 2016; Bunz 2018).

Human interface devices may require more extensive documentation of user experience. Factors
to consider include the array of possible interactions, use of haptics, look and feel of materials
used in the interface’s construction, and the relationship between the movement of the interface
and its effects on the software. Documenting interface devices can be achieved by creating
videos of user interaction. Care should be taken to ensure as many aspects of interaction are
captured as possible, and whether video capture would benefit from comments, narration or
further written explanation. The materials that constitute the device should also be identified and
appropriate steps taken to care for them; this is work which can be undertaken with a specialist
conservator with suitable knowledge of the materials.

22.3.3 Hardware Failure and Obsolescence

Failure of hardware components occurs due to damage to or degradation of their electronic
circuits or mechanical components. This can be caused by faulty or degraded components,
environmental conditions (such as extreme heat or damp), power surges and electro-static
discharge (ESD). Based on discussion with a number of conservators with experience
maintaining hardware — Candice Cranmer and Nick Robinson (ACMI, Melbourne), Chris King
(Tate, London), Paul Jansen Klomp (media artist / tutor Media Art at Artez, Enschede), Arnaud
Obermann (Staatsgallerie, Stuttgart), Morgane Stricot and Matthieu Vlaminck (Zentrum für
Kunst und Medien, Karlsruhe) — the following were identified as common sources of failure
(Cranmer and Robinson 2021; King 2021; Klomp 2021; Obermann 2021; Stricot and Vlaminck
2021):

● Battery failure. For example, reduced ability to hold charge or leaking battery acid. This
is particularly challenging to address where these are soldered to the motherboard and
therefore difficult to replace. Leaking battery acid can also damage the circuit board and
adjacent components.

● Capacitor failure. For example, reduced ability to hold charge or leaking electrolytic
fluid. The latter is particularly common among batches of capacitors from the early
2000s, where a build-up of gas in a faulty electrolytic capacitor can cause the shielding to
split.

● Failure of a mechanical component such as a fan, switch, or drive. For example, the
motor that spins the magnetic platter inside a magnetic hard disk drive may fail,
rendering the data contained inaccessible.

Chapter 22 --- Caring for Software- and Computer-based Art

35

● High operating temperatures. Factors such as high ambient temperature and failure of
cooling systems (e.g., accumulation of dust, fan failure) can result in operating
temperatures exceeding component tolerances, which can accelerate degradation of
materials.

● Oxidation of connectors between components, which impedes connectivity. For
example, this can occur in the metal contacts that connect an expansion card to a
motherboard.

● Poor storage or display conditions. For example, exposure to humidity and
accumulation of dust and other debris can cause components to short-circuit when
powered on.

There is little publicly available empirical data on the failure rates of computer hardware, making
it hard to reach meaningful conclusions as to its frequency in well-controlled conditions. Given
the long time spans over which those collecting software-based art aim to preserve it, it may be
assumed that hardware failure will eventually occur in any given component due to the tendency
of all objects to deteriorate over time. In the examples of sources of hardware failure listed
above, these problems can often be addressed, although in all cases specialist equipment and
expertise would be required. A faulty capacitor can be identified through visual inspection, and
then replaced before it causes damage. A magnetic disk platter can be removed from a failed
drive in controlled conditions, and the data recovered. Other types of hardware failure may be
more catastrophic making repair impossible, particularly due to the industrial processes by which
circuits are manufactured. The extent to which failures are addressable can be identified by
balancing the benefit against the resources required.

When faced with hardware failure, it may be more cost- and time-effective to replace a
component rather than repair it. However, this becomes increasingly challenging with hardware
obsolescence, whereby hardware components are no longer sold or supported by their
manufacturer. Hardware obsolescence is driven by commercial interests. Newer products may
provide better performance or additional features which make them more appealing to the
consumer, thus shifting demand from an old product to a newer product and disincentivizing the
manufacturer from continuing production. In other cases, a manufacturer may simply choose to
stop producing or supporting a product, despite continued consumer interest. The effect is that
hardware becomes both increasingly difficult to repair, as expertise dwindles with decreased
financial incentive, and to replace like-for-like, as the now fixed number of components become
increasingly rare. This forces replacements to be made using different hardware: the treatment
approach is called hardware migration. This process has a secondary effect on the viability of
software due to the changing hardware support in operating systems: vendors are unlikely to
continue to provide driver software for hardware that is no longer commercially available (see
22.3.7 for software obsolescence, and 22.4.3 for hardware migration).

22.3.4 What is Software?

Software consists of stored instructions — or code — written in programming languages. These
are formal languages used to tell a computer what to do. Software can run on many different
hardware platforms, from small devices such as micro-controllers to mobile devices, tablets,
desktop computers and servers. In some cases, the software is written to run on devices of any

Chapter 22 --- Caring for Software- and Computer-based Art

36

size and in other cases, the software is too closely aligned with a specific hardware device or
custom hardware to run on anything else. Web-based software runs on a webserver using the
programming languages, media file types and other paradigms appropriate for a web-server
environment.

Programming Languages

Programming languages have evolved over time reflecting the evolution of the hardware, the role
of computers and how they are used in society, and to meet specific computational and usage
requirements throughout all areas of study and professional practice. There are several hundred
programming languages (Rösler 2021); those most frequently encountered in software-based art
are introduced in 22.3.8.

Source code is a human-readable set of instructions written in a specific programming language.
It can be read and/or edited in any text editor and is commonly written using a software program
called an IDE (Integrated Development Environment) which is designed to support the software
development process. Source code can also be developed within some WYSIWYG environments
such as Adobe’s Flash.

The term high-level programming language refers to programming languages that remain distant
from the details of the computer in order to make programming easier so that onerous tasks such
as memory management are handled “behind the scenes”. High-level languages are meant to be
human-readable; using a high-level programming language, artist-programmers can focus on the
features of code to write the instructions for their artwork using variables, Boolean logic (“if -
then” structures), iteration (such as “loops”), functions and other features of the language that are
not specifically dictated by the computer’s architecture.

In order for a computer program to be executed, it must be transformed into instructions —
called machine code — which can be understood by the target computer. Machine code is a low-
level programming language with close correspondence to the actions carried out by the
computer hardware. The point at which this transformation happens varies and is usually dictated
by conventions associated with the programming language used. While for interpreted languages
like PHP the source code is sufficient to execute the program, for languages such as C++ and
Java, the source code is compiled to executable code, which is not human readable. In cases
where the source code gets compiled, it is no longer needed to run the software.

Executable Software

Executable software is the collection of the executable code and associated data required to run a
program. This is stored in and managed as files, ranging in complexity from a single executable
file to a collection of files which are called upon when the software is run (see fig. 22.9). This
file or collection of files can be referred to by a number of other similar or related terms
including application, binary and build. The contents of executable files are stored in forms
optimized for computer processing and are not intended for human reading.

Chapter 22 --- Caring for Software- and Computer-based Art

37

<<INSERT FIGURE 22.9 HERE [
TBM_Chapter_22_Software_Figure_9_SowFarmAppDirectory.png] Caption:
Figure 22.9 Application directory for John Gerrard’s Sow Farm (near Libbey, Oklahoma)
(2009), viewed in Windows 10, containing a Windows Portable Executable (.exe) file, settings
stored in plain text files and batch and shortcut files for running the software. Screenshot: Tom
Ensom

Executable code is stored and managed in a variety of formats, which may be accompanied by a
wide variety of other files. A useful starting point for understanding these collections of files is
to examine the folder-file structures (including file and directory names which may be indicative
of meaning) and the file formats present. Somewhere within the collection of files will be one or
more executable files, which are used to run the software on a suitable host computer.

Successfully running the executable software relies on connections between this executable
software and other software and hardware components, which were embedded in the executable
software during its development. These are known as dependency relationships. The importance
of dependency relationships in the realization of the software-based artwork may vary. In some
cases, access to a highly specific component might be critical and its absence or failure may
cause the software to fail to execute altogether; for example, a driver required by the software to
communicate with a hardware device. In other cases, there may be some flexibility in the
component used; for example, software may require access to a graphics processing unit (GPU)
to render 3D graphics but may not need access to a specific model. Dependency relationships can
also extend to external resources, such as web services and APIs. See section 22.3.6 for further
guidance on identifying dependency relationships between components.

22.3.5 Types of Software

Custom Software vs. Off-the-shelf Software

Chapter 22 --- Caring for Software- and Computer-based Art

38

For contemporary artists who create software-based works of art, custom software is their
primary medium. Artists may have their own characteristic style with respect to selecting
programming language(s); developing and coding the algorithms that drive the appearance and
behaviors of the artwork; and stylistic programming choices, e.g.whether to calculate color shifts
using an HSB color model rather than RGB model or whether to include comments and thereby
retain earlier “drafts” of source code within the code. In other cases, artists may work with a
collaborator, or team of collaborators, who will also influence the technical choices made and the
style of programming.

Off-the-shelf components are software components which have not been made specifically for
the software-based artwork. Instead, they are typically pre-packaged, widely distributed software
components designed to meet some common need. For a software-based artwork, off-the-shelf
components usually consist of at least an operating system — itself incorporating many
individual software programs — but may also include additional libraries, Application
Programming Interfaces (APIs) and drivers which are not part of the operating system by default.
These components serve critical supporting roles in the execution of the artist-created software
and form a layer that connects the artist-created software with the hardware environment.

Web-based Software

Websites run software that is configured to run on a web server (see 22.3.1) and accessed by
browsers. Websites often require the use of more than one technology (e.g., a programming
language such as JavaScript and the use of a markup language such as HTML) and they can also
host any required media files such as digital images, audio and/or video files.

Proprietary vs. Open-source Software

Proprietary software is under copyright by a publisher and available only to licensees. In this
case the vendor might set limitations such as the number of installations permitted for a given
license and force that limitation through product keys, a serial number, online authentication or
other means.

Free and open-source software is provided at no cost with access to the source code. It can be
released under a variety of licenses: license such as the public domain Creative Commons CC0
license (Creative Commons (CC) n.d.); a permissive license such as the MIT license (Open
Source Initiative n.d.); or under Copyleft such as the GNU license (GNU Operating System n.d.).
Use of open-source software benefits preservation, as source code can easily be gathered and
reused, thus ensuring that it can be modified for preservation purposes if necessary (see 22.4.8).

22.3.6 Analyzing and Documenting Software

Source Code Analysis

Artwork inspection can provide a good understanding of the make-up of a work, but not all
behaviors are discernable to human observation by simply running the piece. Complex features
like open durations, randomization or generative functions can only be identified through source

Chapter 22 --- Caring for Software- and Computer-based Art

39

code analysis. A close reading of the source code, which contains the instructions and the
algorithms that create the artwork not only reveals the artist’s decisions on the behaviors and
presentation of the work, but also its technological make-up and genesis.

This examination method requires the expertise of a programmer or computer scientist and has
been introduced to the conservation community in recent years through interdisciplinary efforts
between media conservators and computer scientists (Engel and Wharton 2014, Engel and
Wharton 2015, Guggenheim Blog 2016, Engel and Phillips 2018, Engel and Phillips 2019).

When conducting source code analysis, the examiners try to find answers to the following
questions:

● Color: How does the artist stipulate the use of color (e.g., HSB or RGB)? How are color
values calculated?

● Randomization: Does randomization play a role in the work? What is the impact on the
artwork’s behavior and appearance based on the random results?

● Speed of animation: Is animation speed rendered or measured in absolute terms such as
seconds or milliseconds which are hardware-independent or relative terms such as delays
that reflect processing time?

● Input: what is the role of user input, if any? Does other input such as the ambient sounds
in the exhibition space play a role?

● Sound and image creation: Are sounds and images created dynamically as the software is
running or does the artwork use external media files that are played or displayed?

● Data sources: Does the artwork use one or more data sources and are they static or
dynamic? How are the data retrieved and processed? Are the data conserved for study or
future exhibitions?

● Systems issues: The interaction and dependencies between the artwork and the operating
system, peripherals and the role of configuration are defined.

● Web--based artworks: What are the parameters for responsive design (the specific page
layouts for a mobile device, tablet, or desktop)? What are procedures for permissions and
access that requires authentication? Does the software address specific browser
constraints?

The following conservation concerns and preservation risks can be identified in the source code:

● Programming languages and third-party libraries: Use source code analysis to identify all
of the programming languages and all of the external, third-party libraries that should be
conserved along with their source code.

● Technologies: Use source code analysis to identify all of the technologies used in a given
work including device drivers for hardware and hardware requirements noted.

Chapter 22 --- Caring for Software- and Computer-based Art

40

● Cost and resource analysis for preservation and interventions: Use source code analysis to
outline the scope and skills required to plan time and cost budgets for interventions.

Source code analysis - that is, reading and documenting the source code of an artwork - can
provide a rich resource not just for conservation, but also for art historical, technical art historical
and curatorial study. For conservators, source code analysis and documentation can offer an
understanding of the behaviors of an artwork as well as insights into potential preservation risks
an artwork may be facing. It helps to assess how much work is required to make a piece run
again; which technical skills are required to do so; and the scope of such a project in order for the
conservator to make informed decisions on intervention and conservation treatment.

Software documentation is essential to long-term maintenance and thus has a long history and is
a major activity in software engineering so there is a great deal of literature on this practice
(Garousi et al. 2013; Bavota et al. 2019). Source code documentation can take a number of
different formats, depending on the resources available with respect to time, cost, and the
expertise of those writing the documentation and the goals of the project e.g., whether the project
is meant to benefit conservators, curators, and art historians, and/or future programmers who
may be commissioned to work on the piece. Successful approaches include making a study copy
of the source code and annotating the study copy with comments and explanations for future
technologists; writing a descriptive narrative of each logical section of the source code for
curatorial and art historical readers; and building out tables and diagrams that identify specific
aspects of the code. Tables or spreadsheets can be used to list a color vocabulary, the media file
types used in the artwork, the static image files used and other facets of the artwork to
complement documentation that identifies the specific areas of the source code that constitute
risk such as deprecated code (Phillips et al. 2017). Visualizations such as flowcharts are
appropriate for older works such as those written in Pascal, while UML diagrams are commonly
used with object-oriented programming languages such as Java (Engel and Wharton 2014; Engel
and Wharton 2015).

On the value of source code analysis:

Glenn Wharton: Source code analysis is a new tool in the conservator’s technical research kit,
but it is not yet widely used. It is a standard maintenance procedure in software engineering,
but as with many research methods adapted from other industries, it needs to be applied with a
strong understanding of conservation ethics. Now that a new generation of conservators are
being trained to work on time-based media, no doubt some will arrive in museum labs with
programming skills. Yet the field has always relied on technical expertise from other fields,
and I predict that software engineers will increasingly be consulted in software-based art
conservation. (Wharton 2021)

Christiane Paul: The degree to which artists annotate their source code varies and source code
analysis helps to determine the purpose, functionality, and intent of the code. Source code
analysis has a tremendous impact in that it helps to identify the conservation strategies—from
rewriting code for a migration to emulating the environment—that best maintain the original

Chapter 22 --- Caring for Software- and Computer-based Art

41

artwork's functionality and intent. The Whitney Museum still is in the early stages of
conducting source code analysis of the works in its artport collection, the Whitney Museum's
platform for net art, and, so far, this analysis has been undertaken only in collaboration with
classes at New York University where students have performed the work. The results have not
yet been actively used but already were very helpful in determining potential strategies for
conserving software-based work. (Paul 2021)

Claudia Roeck: Source code analysis helps to understand and value the materiality of the
artwork. It has the same purpose as scientific imaging and chemical analysis of a painting.
Source code analysis contributes to a better understanding of the artist’s and/or programmer’s
intent. Together with interviews of the artist and/or the programmer one can better decide
which algorithms or features are significant and have to be maintained. Source code analysis
makes one more aware of the craftsmanship of the programmer/artist and of the community
culture linked to certain digital tools. Even if a work has to be transferred to a new technology,
the knowledge of the algorithms, program features, and parameters used in the source code
informs the choice of programming language and platform and facilitates reprogramming.
When acquiring software-based artworks, we do source code analysis to estimate whether and
how long the work will be functional and what additional information or tools we need to
preserve it. Source code analysis in the case of TraceNoizer (2001) by LAN (Annina Rüst,
Fabian Thommen, Roman Abt, Silvan Zurbruegg and Marc Lee) (Roeck n.d.) supported our
decision-making regarding preservation strategies on a technical level and also on a contextual
level (what kind of technology was used in 2001 and how the technological landscape has
changed since, what that means for the interpretation of the artwork and so forth). (Roeck
2021)

Glenn Wharton
Professor, Department of Art History & Lore and Gerard Cunard Chair, UCLA/Getty
Program in the Conservation of Cultural Heritage, University of California, Los Angeles

Christiane Paul
Christiane Paul, Adjunct Curator of Digital Art, Whitney Museum of American Art and
Professor, School of Media Studies, The New School, New York

Claudia Roeck
Claudia Roeck, PhD candidate, University of Amsterdam, Media Studies and time-based
media conservator

Executable Analysis

Executable software typically contains compiled code, which is not human-readable and makes
analysis and documentation work more difficult if the source code is not available. Nonetheless,
in some situations executable code is the only representation of the artist-created software
available. It is important to note that this may significantly increase the risk of losing access to
this artwork in the future, as it makes applying some preservation strategies difficult, if not

Chapter 22 --- Caring for Software- and Computer-based Art

42

impossible. In this section we will briefly discuss the options available in such situations and the
limitations to what we can learn about a computer program and the way it functions and behaves
from executable code alone.

Unlike other common file formats in time-based media conservation like digital video,
executable files usually contain little in the way of accessible metadata. Instead, specialized tools
such as debuggers and decompilers are required to extract useful information from them and
even when successful may offer limited insight compared to full source materials. The use of
such tools leads us down the path of software reverse engineering — that is, attempting to gain
information about how the software works with limited prior knowledge about how it was
created. At its most complete, reverse engineering would aim to produce source code similar or
equivalent to the original source code, from the executable code. In practice however, this is a
laborious and highly specialized activity, particularly for larger and more complex programs.
One approach that may come close is decompilation: the use of a software tool called a
decompiler to create an approximation of the original source code from the executable software.
The success of decompilation will depend on the characteristics of the software (e.g., a program
compiled to machine code is harder to decompile than a Java executable) and availability of a
decompiler tool. Approaches to reverse engineering software-based artworks are discussed
further in Ensom (2018).

Documenting a Software Environment

When documenting a software environment, identify which operating system is being used and
any additional off-the-shelf software such as device drivers, runtime libraries and database
software. Documentation should include the specific version and build number of each program
where possible. Most contemporary operating systems include built-in tools for reporting this,
such as the tools (both called System Information) packaged with Windows 10 and MacOS (see
fig. 22.8 and 22.3.2). Where possible you should choose software tools capable of exporting
information in a widely understood, non-proprietary format such as plain-text, XML or HTML.
Alternatively, it may be possible to gain equivalent information from examining contents of
storage media (e.g., a disk image). This method is less reliable, as it requires the conservator to
manually locate installed programs on storage media. While there are typical install locations
(e.g., Windows 10 uses the Program Files directory, while MacOS X uses the Applications
directory), this is something which can easily be customized by the artist or their collaborators.

It is important to note that while the software environment is distinct from the artist-created
software, the default configuration of off-the-shelf software components can be further modified
by the artist. For example, web server or database software requires a level of configuration to be
used that can then impact its connections with other software components. In the case of John
Gerrard’s Sow Farm, the artist applies image processing techniques using the graphics card
driver, which significantly impact characteristics of the projected image (Ensom 2019). The
extent of any custom configuration of off-the-shelf components should therefore be identified
and documented. Given the large number of configuration options available for some software,
this can be difficult to identify through examination alone, so it is best to work closely with the
creator of the system — be that the artist or a collaborator — to identify these and their
significance.

Chapter 22 --- Caring for Software- and Computer-based Art

43

22.3.7 Software Obsolescence

As hardware and operating systems evolve over time, the risk of software obsolescence grows.
External libraries are updated or no longer supported; devices become outdated or drivers are no
longer written for current hardware and operating systems; programming languages develop and
change and may not be downwardly-compatible; and other changes in the system will cause
software applications to run in ways that are not anticipated, to exit prematurely as a “crash” or
not to run at all. This can be managed in the short-term by avoiding making changes to the
software environment (e.g., preventing automatic updates, creating disk images). However, when
hardware fails or an external dependency changes, obsolescence of components will have to be
negotiated.

Web-based artworks are a clear example of works subject to software obsolescence and software
incompatibilities that can arise when the underlying operating system and/or the software
environment are updated or changed in ways that prevent the artwork from running as expected.
Updates to operating systems, programming languages and other widely used software resources
are often publicly announced ahead of time and in a best-case scenario, risk assessment and
interventions of the affected artworks can be considered while the artworks still run. Web-based
artworks are also subject to updates in browser software and should be tested periodically using
the most popular browsers available at that time to ensure compatibility.

22.3.8 Programming Languages and Platforms and their Preservation Implications

Many artworks employ more than one programming language in order to best handle the tasks
that the artist wishes to accomplish. It is important to understand which language(s) are in use
and the specific role(s) that they play in order to plan for long-term conservation and re-
exhibition. In the following section, several categories of programming languages are introduced
along with examples of languages that conservators may encounter when working with
contemporary artworks. The details listed here are not meant to be a comprehensive software
review or to replace the extensive manuals and documentation on these languages available in
print and online, but rather to point out specific features, functionality, behaviors, and risks
associated with each of these languages or language groups in the context of art conservation.

High-level Programming Languages that are Compiled

This group of programming languages includes languages such as Java, C, and C++. Compiled
programs are architecture-specific, meaning that they run on a computer that has an architecture
(MacOS, Windows, etc.) corresponding to the machine code language used. Risk assessment of
these works includes taking care to find out not only which programming language was used but
also which specific version of that language and whether any additional libraries of source code
were included when the software was compiled.

High-risk artworks in this category include the many Java Applets written for web-based
applications in the 1990s and early 2000s as Java Applets are no longer supported by most
browsers. Works in C or C++ are at risk due to current or future hardware obsolescence as the

Chapter 22 --- Caring for Software- and Computer-based Art

44

close pairing of the language with the operating system and hardware will render these works
inoperable when the appropriate hardware is no longer functioning or available.

High-level Programming Languages that are Interpreted; Scripting Languages

There are a number of programming languages that do not require compilation but rather require
an interpreter. An interpreter executes the human-readable source code at the point at which the
program is run. This requires an installation of a suitable interpreter to be available to the
software, such as Python in order to run a Python script. Client-side JavaScript is an example of
a scripted programming language that can run locally or on a web server through a browser;
either way, viewing source within a browser will typically reveal the JavaScript source code
directly to a viewer in a human-readable format.

Server-side web-based scripting languages such PHP, Perl or Python are interpreted but the
source code is not accessible to the institution or collector unless the artist provides access to the
server or the files. Further, scripts that handle tasks such as file management are hidden from
view and must also be specifically provided to the collector or institution.

Preservation measures for artworks in this category include collaboration with the IT staff
managing the web server to maintain a stable and secure environment, such as consistency in the
appropriate path designations to ensure that the artworks run in the correct programming
language and version. Software upgrades can cause incompatibilities and failure; for example,
while PHP is typically downwardly compatible, Python 3.x is not, and software written in
Python 2.x will not run or will not run correctly in Python 3.x.

High-risk artworks in this category include artworks that rely on widely used libraries such as
server- and client-side JavaScript libraries that change over time. In these cases, a virtual
development space in which a conservator or their team can test the artwork in a software
environment that is configured to match the updated languages and libraries of the production
server is crucial to ensure the ongoing successful presentation of these works.

Markup Languages

Markup languages such as HTML (Hypertext Markup Language) are not programming
languages but rather conventions of annotation that allow implementation to differentiate content
from format; to differentiate content from document structure; and in some cases, to identify
content roles such as designated text as a citation using the <cite> … </cite> tags in HTML, also
known as semantic markup. HTML files are human-readable and may be associated with CSS
(Cascading Style Sheet) files which describe the rules as to how content is displayed with respect
to page layout, font size and color and other format specifications, whether in print, on a tablet,
mobile device, or other device. As text files, HTML and CSS files are easily stored and
preserved. These languages change slowly over time, often with lengthy announced lead-times
which gives conservators time to address any necessary software updates such as replacing tags
that may be deprecated. For example, a list of tags noting which ones are deprecated is available
on the w3schools website (W3Schools - HTML Element Reference n.d.); additional
documentation is available on other sites as well.

Chapter 22 --- Caring for Software- and Computer-based Art

45

Risk assessment of these works includes documenting the versions of the mark-up languages
used and identifying deprecated tags and a remediation strategy where necessary. Risk
assessment will also include checking for cross-browser compatibility to ensure that a given
work either opens in multiple browsers or that a user is advised which browser(s) to use when
viewing a work in this category if limitations are found.

Query Languages

Query languages are used to manage data and answer questions posed to a specific database.
Many artworks use data in databases, which are retrieved by running queries against either a
dynamic or a static database. The queries themselves may typically be launched via a program
written in a programming language such as Python, PHP, Perl, or another language.

Preservation measures begin by identifying the type of database and its storage location along
with verifying access and permissions to ensure security.

SQL (Structured Query Language) is a query language used to obtain data and results from a
server-side relational database such as MySQL, Oracle, PostgreSQL or from SQLite with its
smaller footprint running either locally or on a server. Standard database documentation which is
useful to the conservator includes a data dictionary (a list of all of the tables, fields, and other
objects in the database with descriptions); an E-R diagram (an “entity-relationship” diagram
which provides a visualization of the relationships among the tables); and the results of a
standard “DUMP” query. A “dump” query such as “mysqldump” in MySQL records the contents
of the database as a human-readable script file for study and analysis or to create a new copy of
the database.

SPARQL (SPARQL Protocol and RDF Query Language) is used to retrieve and manipulate data
in a Resource Description Framework (RDF) format such as in Wikibase implementations or
with Wikidata.

A decision must be made as to whether an artwork will run against a static (i.e., unchanging)
database e.g., the data available when it was first exhibited; or a dynamic database which is
updated each time the work is run. If the artwork will run against a static database in the future
and is “frozen in time”, then the data should be backed up and conserved for future use. If a
decision is made to run the artwork against a dynamic (changing) database, then the software that
is used to obtain and manage the database becomes an integral part of the conservation effort and
preservation measures going forward should include identifying all of the data sources and their
respective availability. For example, if external data are captured from one or more websites, the
data sources and/or data formats and availability will likely change over time, creating risk to the
work’s long-term preservation. In such cases it is advisable to store copies of the database at
appropriate intervals so that the work can be exhibited in the future with historical datasets if
necessary, and if so, agreed by all of the appropriate stakeholders.

Assessing and displaying artworks that store data from user input should ideally be coordinated
with the IT professionals involved to evaluate security and to protect against provocative, illegal,

Chapter 22 --- Caring for Software- and Computer-based Art

46

or threatening entries by users. In many countries, it is important to consider General Data
Protection Regulations (GDPR), if any identifiable personal data (e.g., name, age, contact
details) is or can be supplied by users. For artworks that collect statistics and data based on user
activity; it may be important to retain these datasets for future study.

Multimedia Application Authoring Languages and Platforms

There are some programming languages which run inside of software applications and have been
used by artists. Lingo is a scripting language developed for use with Macromedia’s and later
Adobe’s Director platform in the 1990s. Director files (.DCR) could be output as executables to
run directly on Windows or MacOS or as content for the Shockwave runtime environment on the
web at that time. ActionScript was developed for use with Adobe’s Flash to run using Adobe’s
Shockwave player on the web. In both cases, conservators would need the appropriate version of
either Director for Lingo or Flash for ActionScript to set up a development environment that will
allow study, further development, or re-compiling if necessary. ActionScript 3.0 is not
backwards compatible so special care must be taken to correctly identify which version of the
language is in use in order to set up the development environment. Artworks that use these
formats are at risk.

Max (also known as Max/MSP/Jitter) by Cycling 74 and Pure Data (Puckette and Various 1996-
2021) are used to build multimedia applications. Both use a visual programming language in
which the programmer generates code by manipulating a graphical environment rather than by
writing code textually. Unity and Unreal Engine are game development platforms that primarily
use the programming language C#.

Risk assessment of artworks built with these languages includes an evaluation of whether the
work runs on a local mac or PC as a compiled version and if that is sufficient for re-exhibition
(Engel and Phillips 2019; see Section 22.4).

IDE’s (Integrated Development Environments)

An IDE is an integrated development environment; a category of software that is used to support
software development. They may be language specific, such as NetBeans for Java and PyCharm
for Python, target a specific platform such as Microsoft Visual Studio for Windows
development, Xcode for Mac development, or the Arduino IDE for Arduino microcontrollers.
They can also target a specific group of users such as Processing, an IDE created for artists.

<<INSERT FIGURE 22.10 HERE [
TBM_Chapter_22_Software_Figure_10_VisualStudioIDE.png] Caption:
Figure 22.10. A simple C++ application project opened in the Microsoft Visual Studio 2017
IDE. Screenshot: Tom Ensom

Chapter 22 --- Caring for Software- and Computer-based Art

47

Preservation measures for these works include documenting which version of the IDE was used
and with which programming language. Using Processing as an example, earlier versions of
Processing do not support all of the programming languages currently available, and some
versions are not backwards compatible, so it is important to collect the appropriate version of
Processing for each artwork for further documentation and treatment.

22.3.9 Specific Artwork Genres and Preservation Considerations

Web-based Art

Web-based artworks range in complexity from the static HTML web pages (see 22.3.8) of the
early web, to those making use of technologies like JavaScript and Flash to create interactivity,
to large sites that are dynamically generated by software running on a web server.

A web-based artwork may include one or a combination of high-level scripting languages and/or
markup languages with the possible addition of a query language if a database is used for the
artwork in addition to any media files. Some of the web technologies used by artists in the past
are at particular risk at this time. This includes Java Applets and Adobe Flash content, which no
longer runs in contemporary browsers, and the loss of functionality associated with the removal
of support for specific HTML tags. Other considerations include loss of functionality for

Chapter 22 --- Caring for Software- and Computer-based Art

48

browser-based media playback, which changes over time as support for old formats is removed.
Browsers are updated and modified regularly, and new browsers are introduced, which may not
correctly display earlier web-based artworks.

Preservation of a web-based artwork can be approached from the perspective of files stored on
the web server (server-side) or the display-ready web pages returned by the server (client-side).
When implementing server-side preservation, the materials required to run the server should be
archived, which is likely to require close collaboration with IT staff or whoever is responsible for
those servers. The key aspects to be agreed are:

● Levels of access and security permissions for conservators and web developers, to allow
them to document the artwork on the server, as well as upload, download and/or modify
the software and other components that build the website.

● Notifications of any updates to the web server software environment that might impact
the artwork. Web servers often host many websites so decisions about which version to
use for the operating system, databases, programming languages or other software
requirements could be made on the basis of many users’ needs and thus unintentionally
break a web-based artwork. Timely notification allows conservators to test the artwork
and ensure that there was no change.

● Ensuring the security of the web server, particularly with respect to network and systems
integrity, to avoid malicious tampering with the artwork. If there is visitor input, the
hosting institution will need to consider monitoring the input for offensive content and
agree on how and whether to respond.

The conservator should document the hierarchy or “file tree” of the files for the artwork on the
web server, the specific programming languages and dependencies and any specific network
considerations along with standard web server issues such as security, storage, backing up and
server maintenance.

It is important to test all web-based artworks regularly to document and address any problems
that may arise. Using a variety of current browsers on a scheduled basis to check for anomalies
or problems helps to ensure cross-browser compatibility or to highlight the need to advise users
which browser is preferred if necessary.

For web artworks where server-side preservation is not possible, or as a complementary measure,
client-side preservation measures, sometimes referred to as web archiving, may be an option
(National Archives 2011). Specialized tools such as web crawlers can be used to retrieve the
code and data displayed by a browser in the form of a WARC (WebARChive file format), a
standardized web archiving format (Library of Congress - WARC 2020). These recordings
maintain some navigation functionality among the pages of the site, and a degree of
interactivity. Tools such as Conifer (Rhizome - Conifer (software) 2020) and Webrecorder
(Webrecorder, n.d.) allow for small scale, user-guided recording using an intuitive interface, as
well as playback of the WARC files. Web crawling tools such as Browsertrix Crawler
(Browsertrix (software) n.d.), Heretrix (Heritrix3 (software n.d.) and Wget (Wget (software)

Chapter 22 --- Caring for Software- and Computer-based Art

49

n.d.) can be used to carry out automated capture of larger or more complex sites. Using client-
side tools means that processes happening on the server-side are not captured, so not all
recordings are successful. These tools can also be combined with server-side preservation, for
instance when links to external pages are important for the work, so they can be captured
preemptively.

Real-Time 3D, Virtual Reality and Augmented Reality

Real-time 3D (RT3D) rendering is the use of software to generate a moving image sequence in
real-time, from 3D data sources. In contrast to pre-rendered 3D and digital video, where a fixed
number of frames of image data are stored, in real-time 3D frames are generated on the fly. This
allows for a moving image that is dynamic and can respond to user interaction. The development
of RT3D rendering has been led by the video game industry, where the technology has become
ubiquitous. Software-based artworks utilizing RT3D rendering technologies are becoming
increasingly common; see for example the artists John Gerrard (see fig. 22.11) and Ian Cheng
who are represented in a number of museum collections.

<<INSERT FIGURE 22.11 HERE [
TBM_Chapter_22_Software_Figure_11_Gerrard.jpg] Caption:
Figure 22.11 John Gerrard, Sow Farm (near Libbey, Oklahoma) 2009 (2009), installation at Tate
Britain in 2016. This software-based artwork uses real-time 3D rendering to create a virtual
representation of a remote pig farm in the USA.

Chapter 22 --- Caring for Software- and Computer-based Art

50

RT3D software is developed with the assistance of existing libraries and tools. Perhaps the most
significant of these is what is known as an engine. An engine is software which packages a set of
reusable features and tools for RT3D software development. This will typically include a
development environment, known as an editor, which incorporates WYSIWYG elements and
graphical interfaces that simplify the process of development for non-programmers. Within this
development environment, 3D scenes can be built from assets imported into the engine (such as
3D meshes, textures and audio), while interactivity and dynamic events can be added through
scripting languages or visual editors. Engines are created using high-level programming
languages like C++, and can be extended by users through plugins, or the modification and
recompilation from source (if the developer makes this available). Prominent examples of RT3D
engines include Unity and Unreal Engine.

Using an engine editor, a user can build executable software to run on a variety of different
platforms. This consists of a package containing all of the necessary code and data to run the
software on the target platform — usually a particular operating system and a 3D API (e.g.,
DirectX or OpenGL). Real-time 3D software often has a close link with dedicated graphics
hardware, which is designed to offload common calculations in 3D rendering from the CPU. The
presence of a GPU, alongside other powerful hardware components, ensures that frames can be
generated at a rate that is sufficient to maintain an illusion of motion in the images displayed on
an output device. This can be measured using the metric frame rate (the number of frames
generated per second or FPS) or frame time (the amount of time in milliseconds taken to render a

Chapter 22 --- Caring for Software- and Computer-based Art

51

frame). The GPU hardware, drivers and the 3D API used may alter the characteristics of a
rendered image.

Recent research on the preservation of real-time 3D artworks has focused on virtual reality (VR)
artworks (Campbell and Hellar 2019; Ensom and McConchie 2021; Brum et al. 2021) and
augmented reality (AR) artworks (Fortunato and Heinen 2020). VR and AR technologies,
sometimes referred to using umbrella terms such as immersive media and XR, build on real-time
3D rendering. These technologies are centered on hardware technologies that increase levels of
immersion in the virtual environment. VR and AR differ in the extent to which they immerse the
user in a virtual environment. For VR, the user only sees the virtual environment, whereas AR
uses cameras mounted on an HMD or mobile device to display the real-world, which is then
augmented with virtual elements. Mixed reality (MR) artworks combine elements of VR and
AR.

Common immersive media technologies include the head-mounted display (HMD), a display
device that mounts one or two screens in front of a user's eyes, providing a wide-field of view.
An HMD can achieve a stereoscopic image by rendering two frames at slightly different viewing
angles, one for each of the user's eyes which creates the illusion of depth. A high frame rate must
be achieved to prevent motion sickness in the user, which currently requires the use of a
powerful computer system and application of frame interpolation techniques. In addition to
HMD technology, VR and AR also make use of tracking systems. This allows the real-time 3D
software to track the user’s position in the physical environment and translate this into movement
within the virtual environment.

Physical Computing

Physical computing, in the context of software-based art, usually refers to projects of a DIY
nature, that use combinations of low-cost microcontrollers (e.g. Arduinos) or computers (e.g.,
Raspberry Pi) with sensors and other electronic components to control output devices. These
components are often used to generate interaction or respond to external inputs. They can be
used, for instance, to read inputs such as light on a sensor, a finger on a button, or a Twitter
message, and turn them into an output such as activating a motor, turning on an LED, or
publishing content online (Arduino (website) n.d.).

This type of technology is closely aligned with open-source communities and hacker practices,
and the software tools are often open source and hardware specifications openly shared. Physical
computing is part of the curriculum in many art schools, as a fun way to introduce programming
concepts. The robustness of the components and movable parts are usually the main preservation
concern (see also 22.3.1), and although these components tend to be generic in the functionality
they offer, they may have an aesthetic value and may be difficult to replace in the future.

3D-Printed Art

The 2021 conference TechFocus IV - Caring for 3D-printed Art described 3D-printed art as “the
process of creating a three-dimensional object via computer-aided design (CAD) programs and
digital files, printing it using a range of materials from plastic to metal more conventionally, to

Chapter 22 --- Caring for Software- and Computer-based Art

52

all kinds of experimental materials like chocolate or shrimp shells.” (AIC - TechFocus IV 2021).
3D printing is also known as additive manufacture and rapid prototyping. While the artworks
produced using 3D printing technologies are generally cared for by object conservators,
preserving the software and technology required to create these artworks may also provide a role
for time-based media conservators as more artworks using this medium enter collections and
software obsolescence is seen as a risk factor. TBM conservators may thus encounter .stl
(standard tessellation) files which express triangular representations of 3D objects (McCue
2019). Artists “may also be willing to supply the working design files, in Computer-Aided
Design (CAD), Rhino©, or other software” (Hamilton 2017).

The fragile nature of the objects themselves may necessitate decisions on the materiality and
conservation of the objects in cases where a museum and the artist make decisions about re-
printing the object (Oleksik and Randall 2018). Objects conservator Emily Hamilton has
observed that “Some artists feel more strongly about the prints, while for others the files are the
art” (Hamilton 2020). Collaboration between object conservators and TBM conservators will
best support the conservation of these artworks.

On the acquisition of .stl files at MoMA:

At MoMA, Media and Sculpture Conservation collaborated on a case study of the
artwork Altar/Engine (2015) by Tauba Auerbach. Consisting of over 40+ 3D printed
objects, the artwork also arrived at acquisition with the .stl files used to print the objects
and a composite .stl file of the entire piece in a 3D environment. Media and Sculpture
Conservation reviewed the composite .stl file to help guide us in setting installation
parameters for the piece (how the objects are placed on a table surface and the distance
between them, for example) but quickly realized that the .stl files used to generate the
objects were also a critical resource as it allowed us to evaluate the condition of the
objects and asses how much they have degraded over time. A number of the objects, it
was observed, had already started to collapse on themselves which we only realized in
this comparison. Additionally, we used the .stl files to aid in designing the packing for
long-term storage for some objects to provide better support. The use of .stl files as
documentation, reference and as a resource has since become a critical element of our
long-term strategy for caring for these objects and we now regularly request them when
accessioning 3D printed/rapid prototype objects.

Peter Oleksik, Associate Media Conservator, Museum of Modern Art, New York City.
(Oleksik 2021)

22.4 Preservation and Treatment of Software-based Art

In the long-term care of software-based art, we must contend with the inevitable failure and
obsolescence of components (see 22.3.3 and 22.3.7). In order to continue to display software-
based art, it may therefore be necessary to make changes to the system used to realize the
artwork. Through carefully considered modification of components, we can extend the life of the

Chapter 22 --- Caring for Software- and Computer-based Art

53

artwork without compromising its identity. Despite the need to accommodate change in the
conservation of software-based art, the technologies with which a work was created will always
be an important part of the artwork’s history, reflecting the period and context of creation, as
well as the artist’s practice. They must therefore always be thoroughly documented, even if they
are replaced to ensure the work remains displayable.

In this section we present a variety of approaches to preservation, treatment, and interventions
for computer- and software-based art including both environment and code interventions. Code
intervention is the modification of code in order to maintain the functionality of an artwork.
Environment intervention strategies contrast with code intervention strategies in that they
involve modification to the hardware or software environment surrounding the artwork. In
practice, you may wish to choose one of these intervention approaches or combine them as
dictated by the requirements of the treatment.

22.4.1 Introduction to Environment Intervention Strategies

Environment intervention strategies are those which alter or adapt the technical environment in
which software runs, so that access to that software can be maintained. A technical environment
consists of two parts: the hardware environment, which is made up of physical hardware
components; and the software environment, which consists of off-the-shelf software components
(as opposed to artist-created software). Environment intervention strategies can be used to
address a wide variety of problems in the care of software-based art, such as the failure of a
hardware component, and allowing software to run on computers for which it was not designed.
In this section, we will introduce various approaches which can be taken, their limitations and
some general principles for their application.

22.4.2 Environment Maintenance

Environment maintenance is the process of keeping a technical environment operational, so that
software can continue to be run within this environment. This can include processes such as
repairing hardware and updating off-the-shelf software. This approach is most likely to be
effective in the short term, when access to replacement hardware components, software updates
and the expertise required to use them remains available. As maintenance continues over
extended periods of time, compatible hardware components may become increasingly difficult to
find, updates to off-the-shelf software may cease and expertise in the technologies may dwindle
or disappear altogether. When such factors become limiting, environment migration,
environment emulation or code intervention strategies should be explored.

One common example of environment maintenance is the replacement of failed hardware
components. For example, if an internal component of a computer fails, it could be replaced with
an identical or similar device. Similarity can be very important when making such replacements,
as this will help lower the risk of breaking dependency relationships. Important factors to
consider include the performance of replacement components, interface between the component
and motherboard and the availability of drivers for the target OS. For example, it may not be
possible to replace an IDE/PATA hard drive with a SATA hard drive unless this newer interface
technology is supported by the motherboard and operating system.

Chapter 22 --- Caring for Software- and Computer-based Art

54

Maintenance can go beyond replacement of components and address failure directly through the
repair of electronics at the circuit level. Successfully doing so is contingent on suitable electronic
components being available, and access to the tools and expertise required to carry out the
replacement. For example, a specialist might be able to remove a failed capacitor, identify a
suitable replacement by carefully matching the specification, and solder it into place in the
circuit. However, this kind of repair can be very challenging (if not impossible) for newer
computer hardware due the use of industrially manufactured PCBs which can be high density,
multi-layered and use components which are not widely available (Stricot and Vlaminck 2021).

Off-the-shelf software updates are another form of environment maintenance; for example,
applying security updates to an operating system or updating to a newer more stable hardware
driver. As a consequence of dependency relationships, and the alteration or removal of features
by software developers over time, carrying out this kind of update can risk loss or change of
work-defining characteristics. For networked artworks, where public internet access must be
maintained over extended periods of time, security risks are an added concern. The software on a
server supporting a web artwork will need to either be updated, or the server securely emulated
(see 22.4.4). It is important to note that, if the environment is updated, the artist-created source
code must be tested for compatibility and evaluated for possible code intervention (see 22.4.7).

22.4.3 Environment Migration

Environment migration is the process of moving software from one technical environment to
another newer technical environment without altering the software itself. An example of this
approach would be installing software designed for an obsolete computer system on a
contemporary computer system. Where possible, this is advantageous in the conservation of
software-based artworks, as it is one way of mitigating the risks posed by the failure and
obsolescence of components. However, its usefulness is often limited by the tendency for
technical environments to change over time, which can break dependency relationships between
the software you wish to preserve and its technical environment. For example, software designed
to run on the Macintosh computers of the 1990s and early 2000s, which used PowerPC CPUs,
will no longer run on the Intel-based and ARM-based Macintosh computers available today. For
this reason, environment migration tends to be feasible only in a relatively short-term timeframe.

Assessing the viability of environment migration should be led by an understanding of the
dependencies of the software at the center of the software-based artwork system. For example, in
the case of replacing an aging computer system with a newer one, information such as the
required CPU architecture and operating system will help determine a suitable system to migrate
to. Ideally, these two elements of the hardware specification would be matched in the newer
computer system. However, due to the process of obsolescence this may be difficult to achieve.
For example, as Windows XP is no longer sold or supported by Microsoft, hardware drivers are
rarely created to support modern hardware components on this operating system. A change in the
hardware environment may therefore precipitate a change to the software environment. For
software developed to run on Windows XP, there is a chance of success depending on whether it
uses any elements of Windows XP which are no longer present in a newer version of Windows
such as Windows 10.

Chapter 22 --- Caring for Software- and Computer-based Art

55

In the case of the artwork Subtitled Public (2005) by Rafael Lozano-Hemmer, it was possible for
conservators at Tate to install and run the Windows XP software on Windows 10 without
altering it. However, a quirk of the programming caused the software, which carries out motion
tracking using a computer vision system, to run with significantly increased latency. The source
code was refactored and recompiled by the artist’s programmer to resolve this. Further risks that
may require future intervention were identified as part of the treatment; most significantly that a
Windows component used by the software to access video camera feeds has been deprecated —
meaning its use is discouraged by Microsoft — and may be removed in future versions of
Windows. As this example illustrates, environment migration is often a short-term measure
where it is possible at all. In situations where there have been significant changes in prevalent
hardware and software environments, such as a CPU architecture change, environment emulation
may be an effective alternative.

22.4.4 Environment Emulation

Rather than moving software to a new technical environment, it may be more advantageous to
emulate a suitable environment. Emulation can be defined as the use of software or hardware
tools called emulators, which allow one computer system to behave as if it were a different
computer system. Emulation is useful because it allows us to run operating systems and other
software on computer hardware which they were not designed for. This has significant
advantages in supporting long-term access to digital materials broadly, as emulating an obsolete
computing platform allows us to maintain access to it without requiring physical hardware,
which as discussed above, becomes harder to repair and source over time. Emulation was first
widely discussed in a digital preservation context after a series of articles by Jeff Rothenburg in
the 1990s (Rothenberg 1995; Rothenberg 1999). Its value as a preservation strategy is now
supported by a growing body of evidence from a variety of digital preservation contexts
(Wheatley 2004; von Suchodoletz et al. 2008; Espenschied et al. 2013; Dietrich et al. 2016).

The term emulation can be used to refer to a number of related approaches. Emulation in its
strictest sense — known as full-system emulation — is where all hardware is completely
simulated within the emulator. At time of writing, software tools are the best option for
emulating desktop computers and will be the focus of this section. However, hardware devices
are also available, such as field-programmable gate array (FPGA) integrated circuits that can be
programmed to mimic other hardware. When talking about emulation using a software emulator,
the physical computer system can be referred to as the host, while the computer system that is
emulated in software can be referred to as the guest.

Chapter 22 --- Caring for Software- and Computer-based Art

56

On Emulation-as-a-Service

While local access — that is, access via a physical computer at a specific location — is useful
for the display of software-based art in physical exhibition spaces, it is not the only way to
provide access to emulated software-based art. We have recently seen the emergence of
platforms that provide web browser-based access to emulators running on remote servers (von
Suchodoletz et al. 2013; Liebetraut et al. 2014). This approach is known as emulation-as-a-
service (EaaS) and has already been applied to providing access to software-based art from the
Rhizome collection (Espenschied et al. 2013). The Scaling Emulation as a Service
Infrastructure (EaaSI) project is continuing the development of the EaaS software and
infrastructure (Software Preservation Network - EaaSI n.d.).

The great advantage of the EaaS approach is that it allows the presentation of emulated
software-based art to anyone with an internet connection and a web browser. It also greatly
simplifies the process of using emulators by shifting emphasis to external management of the
technical aspects of emulation through a central location, and then providing access to pre-
configured environments to suit a variety of common use cases. The disadvantage to this is that
control of the technical aspects of emulation is handed over to the service provider which may
reduce configuration and customization options. EaaS tends to be most successful for
software-based artworks in which the software has few external dependencies (e.g., on
physical peripherals) and requires a single video output. It has been successfully used for
emulating web-based artworks, where it can offer a secure way of providing public access to
web servers that require outdated software (Roeck et al. 2019).

Virtualization

Virtualization is similar to emulation but differs in that it allows the guest system access to some
of the underlying guest hardware. This is most frequently encountered in CPU virtualization, in
which a specialized piece of software called a hypervisor allows the virtualization software to
execute code directly on the physical processor of the host machine. The condition of this is that
the guest operating system is able to make use of the same instruction set architecture (ISA) as
the host. This is because unlike emulation, processor instructions are not translated to suit
execution on the host processor. This has significant advantages for the performance of the guest,
as having direct access to underlying hardware allows the software to execute at closer to native
speeds than would be possible when instructions are translated in full system emulation.
Virtualization has been demonstrated as a viable strategy in the preservation of software-based
art (Lurk 2008; Falcão et al. 2014).

While the term virtualization is often used synonymously with CPU virtualization, other
components may also be virtualized. This is used for GPUs or other components where it is
desirable for them to be shared between guest and host, and where it is typically known as
paravirtualization (Roeck 2018). A related technique called passthrough may also be used to
allow guests direct access to host hardware components (e.g., a USB device). While this allows it
to be used at native speed, this comes with the disadvantage that the hardware component cannot
be shared with the host. This also affects preservation prospects, as virtualized components are

Chapter 22 --- Caring for Software- and Computer-based Art

57

more closely tied to physical hardware and the host operating system-specific drivers to support
them (Rechert et al. 2016).

Containerization

Containerization (also known as operating system -level virtualization) involves a similar
paradigm to virtualization but instead relies on containers: packages of software, consisting of
the program to be run and any software dependencies it requires to run on a host operating
system (IBM Cloud Education 2021). This container is stored in a form that is easily shared and
reused with minimal configuration required in order to use it, known as a container image. A
container image can conform to a variety of file format specifications. Much like virtual
machines, containers have found use in the context of web development, where they offer a
means of running multiple software environments on the same server hardware. Unlike virtual
machines, container images do not contain an operating system. As a result, they are smaller in
size and rely on a container runtime, such as Docker Engine or containerd (Cloud Native
Computing Foundation n.d.), instead of a hypervisor (see Virtualization). Containerization can
achieve faster performance than emulation or virtualization.

Containerization is finding use in the presentation of web-based artworks. For example, it has
been used as a way to provide access to old versions of web browsers by Rhizome (Rossenova
2020a). It is also used by Haus der Elektronischen Künste in Basel for managing web servers,
which Claudia Roeck describes as follows:

"Each artwork is in a container, and each container contains a web server with the
artwork. This is because they all need different scripting language versions, database
versions, everything — each artwork has a different environment. Some might use the
same software, but they're not using the same versions, so you can't really have them on
the same web server. So, for each work you need a web server, and they are packed each
in one container.” (Roeck 2020)

Containerization does not have the preservation applications of emulation or virtualization
however, which achieve a level of independence from the physical hardware (Roeck 2020).
Containerization is instead reliant on an additional piece of off-the-shelf software (the container
engine) and any software packaged in a container must be able to run on the host operating
system.

22.4.5 Choosing an Environment Intervention Approach

When choosing which environment intervention approach to apply to a work requiring treatment,
the first step should be to identify whether hardware can be repaired or replaced like-for-like. If
so, environment maintenance is likely to be a good option to explore, as this minimizes risk of
unintended alterations to the artwork. If repair or replacement is not an option, or is prohibitively
costly, you can assess whether or not carrying out environment migration is likely to be feasible.
Decisions about how to approach this must be made on a case-by-case basis but will usually
involve assessing the dependencies of the software and determining whether or not they can be
maintained after the proposed migration process. This may necessitate a certain amount of

Chapter 22 --- Caring for Software- and Computer-based Art

58

experimentation, as it is not always possible to predict the impact changes will have on the
execution of the software. When it is not possible to migrate to newer hardware, an intervention
involving environment emulation should be considered.

22.4.6 Emulation in Practice

When deciding which approach to emulation to take, consider:

● What emulation tools are available to support access to this kind of software on modern
computers?

● What are the hardware dependencies of the software, and can one approach support these
better than another?

● What are the performance requirements of the software, and can one approach support
these better than another?

● To what extent does this approach mitigate obsolescence and how soon would another
intervention be required?

● Will this approach support requirements for access to and/or display of the software-
based artwork?

Experimentation with different tools may be necessary to find the approach that best meets the
aim of the intervention. Time-based Media Conservator Jonathan Farbowitz describes a typical
emulation use case as, “a very simple setup of software running on a single computer with a
single video output, and a minimum of peripherals” (Farbowitz 2020). More complex use cases
can come up against the limitations of emulation technology (e.g., works requiring 3D
acceleration capabilities or access to peripherals).

There are a large number of tools and workflows for carrying out emulation, and we do not cover
these exhaustively here. Instead, we present a simple workflow that will help make applying
emulation successful. This sequence of steps is informed by the workflow in use at Tate, which
was developed during the Software-based Art Preservation Project (Ensom et al. 2021), based on
outcomes of a research collaboration between Klaus Rechert and Tate in 2016 (Rechert et al.
2016).

1. Select an emulator. Use information about the original computer system on which the
software was designed to run (e.g., processor architecture, operating system) to select a
suitable emulator (see Table 22.3). Suggested open-source emulators are Basilisk II
(Bauer and Various n.d.), PCem (Walker 2007), QEMU (The QEMU Project
Developers 2010), SheepShaver (Bauer and Various n.d.) and VirtualBox (Oracle
Corporation n.d.). Choosing an emulator which also supports virtualization can
improve performance.

2. Prepare a disk image. A disk image (see Chapter 14) will act as a storage device for the
emulated computer system. If the disk image has been acquired from a physical machine,
you may need to convert the image to a format supported by that emulator. If you have
not acquired a disk image from a physical machine, you can create a synthetic disk image
(see Chapter 14 and Espenschied 2017). This is an empty disk image container and will
require you to install an operating system, and any other software required, via the
emulator. Two useful tools for creating and converting disk images are qemu-img (

Chapter 22 --- Caring for Software- and Computer-based Art

59

QEMU Project Developers 2021) associated with the QEMU emulator and VBoxManage
(Oracle Corporation 2004) associated with the VirtualBox emulator.

3. Configure the emulator. Options within the emulator should be used to match or
approximate the hardware requirements of the software. Ensuring these are as closely
matched as possible increases the chance of success.

4. Run the emulation. If you experience problems at this step (e.g., the disk image does not
boot), you can experiment with returning to the previous steps and modifying the
emulator configuration or the disk image.

5. Assess the emulation. Assess the success of the emulation by making use of side-by-side
comparison with physical hardware, image and video reference materials, quantitative
metrics and other documentation. See Magnin (2015) and Ensom (2018) for example
approaches.

6. Document the emulation. Document the process so that it can be understood in the
future. Important information to record includes the workstation used, the versions of
software tools used, any modifications made to the base disk image (e.g., format
conversion), a record of the configuration options used with the emulator and notes on
the success of the emulation (e.g., problems encountered and solutions developed,
differences between the emulation and the original hardware).

7. Archive the emulation. Determine whether you wish to archive the components of the
emulation so that it can be repeated in the future. Where emulation was successful, and
particularly where the emulation was used to display the work, doing will help support
future treatment and display. Archived components should include the binaries or
installer for the specific version of the emulator and the disk image used, along with
documentation as described in the previous step.

Table 22.3 Summary of commonly encountered processor architectures, associated operating
systems and a selection of actively developed emulators capable of running them.

Processor Architecture Associated Operating
System(s)

Suggested Emulators

Motorola 68000 (also
known as 68k)

Mac System 7 Basilisk II
QEMU (qemu-system-m68k)

Intel 80386 (also known as
i386, IA-36 or x86-32)

Windows 9x (95, 98, Me,
2000)
Windows XP
Windows Vista
Ubuntu

PCem
QEMU (qemu-system-i386)
VirtualBox

PowerPC (also known as
ppc)

Mac OS 8
Mac OS 9
Mac OS X (10.0 - 10.5)

QEMU (qemu-system-ppc)
SheepShaver

x86-64 (also known as
AMD64 or Intel x86-64)

Windows Vista
Windows 7
Windows 8

QEMU (qemu-system-x86_64)
VirtualBox

Chapter 22 --- Caring for Software- and Computer-based Art

60

Windows 8.1
Windows 10
Mac OS X (10.4 or later)
Ubuntu

ARM MacOS 11 or later
Ubuntu (and other Linux
distributions)
Android
iOS

QEMU (qemu-system-aarch64)
[limited or no support for some
operating systems e.g., iOS]

Emulation is often an iterative process of troubleshooting problems through the testing of
different tools and configurations, and consulting of existing online resources where these may
well have been encountered before. Some useful practical resources include the E-Maculation
forum (Emaculation.com n.d.) for Mac emulation, the QEMU QED website (Gates n.d.) for
guidance on using the QEMU emulator, and the developer-created user documentation for the
tools mentioned above. Although not every emulation attempt will be successful, emulation and
other forms of environment intervention are also opportunities to gain knowledge about your
software-based artwork; by testing different intervention approaches, we learn about and
document the connections between a piece of software and its technical environment.

22.4.7 Introduction to Code Intervention

In some cases, code intervention — the modification of code in order to maintain access to
software — is deemed necessary to restore a work of software-based art. Evaluating the scale of
intervention needed is a first step towards remediation. For example, a relatively small
intervention of one or two lines of code would be required to modify the source code of a
scripting language when an update is required to access a different URL linking to an external
dependency such as a data source or media player. Additional steps would be required even for
this small change if the software for the artwork needs to be recompiled. If more substantial
changes are required, for example where an obsolete version of a programming language is no
longer supported, the code would need to be migrated to another programming language.

22.4.8 Code Migration

Migration is a term that has different meanings in a variety of contexts. With respect to
conservation of film and video, it usually refers to a change in the carrier or format of the media.
For software-based artworks, it can refer to migrating an artwork from one hardware
environment to another for exhibition or preservation purposes (see 22.4.3). Code migration
refers to the migration from one programming language or development environment to another
and is an intervention that requires a review and re-writing of parts or most of the source code.

Migrating a software-based work of art from one programming language or development
environment to another can be a resource-intensive process, undertaken after considering “the
existing migration options [that] are useful for preserving software-based art and how they

Chapter 22 --- Caring for Software- and Computer-based Art

61

compare to the emulation options currently used” (Roeck et al. 2019). When evaluating the
migration of a work of software-based art from one programming language or development
environment to another, there are a number of considerations that are pertinent to software-based
artworks that are not necessarily relevant to other software applications. This is due to the
conservation goals of minimal intervention, significance of the artist-authored code, respecting
reversibility, and selecting programming solutions that best support long-term preservation of the
artwork.

Selecting the Target Programming Language

Following are some of the questions to consider when selecting the programming language to
migrate the artwork to. First, is there a newer version of the same programming language or
development environment available? If so, then upgrading to a newer version of the software or
environment that the artist originally selected is in keeping with the artist’s choice of language or
environment at the time that the work was created, taking care to check for missing or new
features that are not backward-compatible. In addition, migrating a software application to a
newer version of the same language or environment is likely a well-documented process and it is
possible that some of the migration can be handled programmatically either by using custom
software written for this purpose or reviewing tools available online. For example, software has
been written to do a rough “first pass” on converting Python 2.x code to Python 3.x code.

If this is not an option, the next question to address is whether there is another programming
language that is similar in syntax and structure that could be used. While making decisions
around migration, other considerations play a role as well. For example, are there analogous
functions, libraries, or other code sources to support the restoration as envisioned? As artists
make use of third-party libraries for graphics, media players, special effects and other purposes,
it is important to ensure that these libraries are compatible, available in the new programming
language or environment or that comparable libraries are available. Conservators along with their
IT or programmer specialists should also consider how and whether the software and hardware
environments for the specific artwork would need to be configured to accommodate the
migration and if so, whether that would cause further issues. Finally, as is true for all software, a
determination needs to be made that the language selection will support all of the required
systems and functional requirements to render the artwork’s behaviors as intended. In the case of
software-based artworks, special attention must be paid to how the artwork will appear to ensure
visual and artistic integrity (which is not necessarily true for software application migrations
outside of the visual arts). Long-term preservation of the new programming language is of great
importance so that future interventions can be postponed as long as reasonably possible.

Code Resituation

When a new programming language must be selected, it is important to address whether there is
another programming language that is similar in syntax and structure that could be used. For
example, when restoring a web-based work of art that runs as a Java Applet, the intervention will
require migration to another programming language as Java Applets no longer run under
standard browsers. In such a case, one could consider Python or JavaScript, to name two
examples; between the two, the syntax and structure of JavaScript is much closer to Java than

Chapter 22 --- Caring for Software- and Computer-based Art

62

Python, so although a Python restoration could ultimately look the same and behave the same as
the original artwork, the code would by necessity look quite different.

With Java and JavaScript on the other hand, some portions of the artist’s original code can be
copied as-is from Java to JavaScript, along with a small library of functions to manage some of
the differences between the languages (such as the way that floating point numbers are handled).
This approach was developed at the Solomon R. Guggenheim Museum during the restoration of
John F. Simon Jr.’s web artwork Unfolding Object (2002) (Phillips et al. 2018) and called Code
Resituation (Engel and Phillips 2018). In this case a significant amount of Unfolding Object’s
original code could be retained, including the algorithms that render the abstract “objects” when
users interact with the work, thus ensuring fidelity to the artist’s work. Further, when code can be
migrated in this way, aspects of the functionality are therefore not affected which in turn
supports testing and A-B comparisons during development.

Code Migration: Quality Control and Documentation

As with other treatments, it is important to conduct standard software development testing
throughout development to ensure performance. Web-based artworks should also be tested using
all of the commonly used browsers and on different platforms (Windows, MacOS and Linux, if
available). Appropriate “A-B comparisons” running the work in its original form if that can still
be arranged alongside the restored version can be part of the quality control process throughout
the development process as needed. For web-based artworks, a development environment (e.g., a
website or platform such as AWS that is configured to simulate the institutional or collection
web server but not available to the public) is valuable throughout restoration treatment and
testing. During this phase, the programmer(s), conservator, and the artist, if appropriate, can all
have access to view the progress. A VCS implementation such as git is helpful in tracking
progress, bugs, and documenting the software migration. Upon completion of the restoration, it
is advisable to download a report from the VCS software to capture all of the steps and decisions
made throughout the process as part of the treatment documentation or as a separate treatment
report. Any code intervention should also be documented within the source code of the
restoration copy through code annotation (for examples, see Phillips et al. 2017; Engel and
Phillips 2019).

22.5 Conclusion

Hardware and software will continue to change as new devices, new programming languages and
new paradigms become available over time; a comprehensive list of scenarios is not possible, nor
would we want it to be as artists continue to explore new technological horizons in their work.
Those caring for works of software- and computer-based art will be faced with languages and
environments that are not discussed in this chapter as they have not yet been developed.
However, the principles remain the same: to understand the technologies behind the hardware
and software and the possible impacts of failure and obsolescence; to consider the nature of the
programming language(s) and other tools used in creating the artwork; and the role of data,
media files and external dependencies, if any. Some emerging challenges for conservators will
include the ongoing introduction of industrial algorithmic processes such as artificial intelligence
and machine learning into artists’ works, and technical and ethical implications of NFTs and

Chapter 22 --- Caring for Software- and Computer-based Art

63

other blockchain technologies. Breaking down these new artworks into their respective
components, the “anatomy of the artwork” as it were, will inform the decision-making of
conservation teams moving forward into the future.

Conservation treatment options will evolve, as the time-based media conservation community
continues to pioneer new intervention approaches to help safeguard the longevity of software-
and computer-based art. Our response to new technologies and challenges will be best supported
through collaboration with colleagues in the wider digital preservation and computer science
communities.

Acknowledgements

The authors wish to thank Lan Linh Merli-Nguyen Hoai, Time-based Media Conservation
Fellow at Düsseldorf Conservation Center and Professor Craig Kapp, Clinical Professor of
Computer Science, Department of Computer Science, Courant Institute of Mathematical
Sciences at New York University for taking time to read this chapter and provide valuable
feedback.

BIBLIOGRAPHY

AIC (American Institute for Conservation). “TechFocus III: Caring for Software-Based Art.” American

Institute for Conservation (AIC) and Foundation for Advancement in Conservation (FAIC)
Resource Hub, September 25, 2015. https://resources.culturalheritage.org/techfocus/techfocus-iii-
caring-for-computer-based-art-software-tw-2/.

———. “TechFocus IV: Caring for 3D-Printed Art.” AIC (American Institute for Conservation), 2021.
https://learning.culturalheritage.org/products/techfocus-iv-caring-for-3d-printed-art.

Archive of Digital Art (ADA). “ADA | Archive of Digital Art (Website).” Accessed February 27, 2021.
https://www.digitalartarchive.at/nc/home.html.

Arden, Sasha, and Mark Hellar. Interview with Sasha Arden and Mark Hellar by Patricia Falco, Tom
Ensom and Deena Engel, October 26, 2020.

Arduino. “Arduino (Website),” 2022. https://www.arduino.cc/.
Association of Research Libraries (ARL). “Code of Best Practices in Fair Use for Software Preservation,”

2019. https://www.arl.org/wp-content/uploads/2018/09/2019.2.28-software-preservation-code-
revised.pdf.

Barok, Dušan, Julie Boschat Thorez, Annet Dekker, David Gauthier, and Claudia Roeck. “Archiving
Complex Digital Artworks.” Journal for the American Institute of Conservation 42, no. 2
(2019a): 94–113. https://doi.org/10.1080/19455224.2019.1604398.

Bauer, Christian, and Various. Basilisk II (Software). Accessed December 20, 2021.
https://basilisk.cebix.net/.

———. SheepShaver (Software). Accessed December 20, 2021. https://sheepshaver.cebix.net/.
Bavota, Gabriele, Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Marquez, Mario Linares-Vasquez,

Laura Moreno, and Michele Lanza. “Software Documentation Issues Unveiled.” In 2019

Chapter 22 --- Caring for Software- and Computer-based Art

64

IEEE/ACM 41st International Conference on Software Engineering (ICSE), 1199–1210.
Montreal, QC, Canada: IEEE, 2019. https://doi.org/10.1109/ICSE.2019.00122.

Brokerhof, Agnes W. “Installation Art Subjected to Installation Art Subjected to Risk Assessment –
Jeffrey Shaw’s ‘Revolution’ as Case Study.” In Inside Installations, edited by Tatja Scholte and
Glenn Wharton, 91–101. Amsterdam University Press, 2011.
https://www.academia.edu/8034919/Installation_Art_Subjected_to_Installation_Art_Subjected_t
o_Risk_Assessment_Jeffrey_Shaws_Revolution_as_Case_Study.

Browsertrix Crawler (Software). Rhizome Webrecorder. Accessed February 7, 2022.
https://github.com/webrecorder/browsertrix-crawler.

Brum, Olivia, Mauricio van der Maesen de Sombreff, Eléonore Bernard, and Gaby Wijers. “A Practical
Research into Preservation Strategies for VR Artworks on the Basis of Justin Zijlstra’s 100 Jaar
Vrouwenkiesrecht.” LIMA and the Dutch Digital Heritage Network, 2021. https://www.li-
ma.nl/lima/sites/default/files/Rapport_A-Practical-Research-into-Preservation-Strategies-for-VR-
artworks-on-the-basis-of-Justin-Zijlstras-100-Jaar-Vrouwenkiesrecht.pdf.

Bunz, Sophie. “Preserving Stephan von Huene’s Electronic Artworks by Means of Bit-Stream
Documentation.” The Electronic Media Review Five: 2017-2018 (2018).
https://resources.culturalheritage.org/emg-review/volume-5-2017-2018/bunz/.

Campbell, Savannah, and Mark Hellar. “From Immersion to Acquisition: An Overview Of Virtual Reality
For Time Based Media Conservators.” Electronic Media Review Volume Six: 2019-2020 (2019).
https://resources.culturalheritage.org/emg-review/volume-6-2019-2020/campbell/.

Cloud Native Computing Foundation. Containerd (Software). Go. Accessed December 20, 2021.
https://containerd.io/.

Cranmer, Candice, and Nick Robinson. Interview with Candice Cranmer and Nick Robinson by Tom
Ensom. Audio Recording, March 3, 2021.

Creative Commons (CC). “Creative Commons - About the Licenses.” Accessed December 1, 2021.
https://creativecommons.org/licenses/.

Dekker, Annet. Collecting and Conserving Net Art: Moving beyond Conventional Methods. London ;
New York: Routledge, Taylor & Francis Group, 2018.

Dekker, Annet, and Patricia Falcão. “Interdisciplinary Discussions about the Conservation of Software-
Based Art Community of Practice on Software-Based Art.” London: Tate, PERICLES, 2017.
https://openresearch.lsbu.ac.uk/item/8v21z.

Della Casa, Davide. “PDFs Of ‘Computer Graphics And Art.’” TopLap (blog), September 27, 2012.
https://toplap.org/pdfs-of-computer-graphics-and-art/.

Di Cosmo, Roberto, and Stefano Zacchiroli. “Software Heritage: Why and How to Preserve Software
Source Code.” In IPRES 2017 - 14th International Conference on Digital Preservation, 1–10.
Kyoto, Japan, 2017. https://www.softwareheritage.org/wp-content/uploads/2020/01/ipres-2017-
swh.pdf.

Dietrich, Dianne, Julia Kim, Morgan McKeehan, and Alison Rhonemus. “How to Party Like It’s 1999:
Emulation for Everyone.” The Code4Lib Journal, no. 32 (April 25, 2016).
https://journal.code4lib.org/articles/11386.

Digital Preservation Coalition (DPC). “What Are the Risks?,” 2022.
https://www.dpconline.org/digipres/implement-digipres/dpeg-home/dpeg-risks.

Chapter 22 --- Caring for Software- and Computer-based Art

65

Emaculation.com. “Emaculation.Com | Forum.” Accessed February 1, 2022.
https://www.emaculation.com/forum/.

Engel, Deena, Lauren Hinkson, Joanna Phillips, and Marion Thain. “Reconstructing Brandon (1998-
1999): A Cross-Disciplinary Digital Humanities Study of Shu Lea Cheang’s Early Web
Artwork.” Digital Humanities Quarterly 12, no. 2 (2018): 44.
http://www.digitalhumanities.org/dhq/vol/12/2/000379/000379.html.

Engel, Deena, and Joanna Phillips. “Applying Conservation Ethics to the Examination and Treatment of
Software- and Computer-Based Art.” Journal of the American Institute for Conservation 58, no. 3
(July 3, 2019): 180–95. https://doi.org/10.1080/01971360.2019.1598124.

———. “Introducing ‘Code Resituation’: Applying the Concept of Minimal Intervention to the
Conservation Treatment of Software-Based Art.” The Electronic Media Review Volume Five:
2017-2018 (2018): 22. https://resources.culturalheritage.org/emg-review/volume-5-2017-
2018/engel-2/.

Engel, Deena, and Glenn Wharton. “Reading between the Lines: Source Code Documentation as a
Conservation Strategy for Software-Based Art.” Studies in Conservation 59, no. 6 (November
2014): 404–15. https://doi.org/10.1179/2047058413Y.0000000115.

———. “Source Code Analysis As Technical Art History.” Journal of the American Institute for
Conservation 54, no. 2 (May 2015): 91–101. https://doi.org/10.1179/1945233015Y.0000000004.

Ensom, Tom. “Revealing Hidden Processes: Instrumentation and Reverse Engineering in the
Conservation of Software-Based Art.” In Electronic Media Review, Vol. Five: 2017-2018.
Houston, Texas, USA, 2018. https://resources.culturalheritage.org/emg-review/volume-5-2017-
2018/ensom/.

———. “Technical Narratives: Analysis, Description and Representation in the Conservation of
Software-Based Art.” Ph.D., King’s College London, 2019.
https://kclpure.kcl.ac.uk/portal/en/theses/technical-narratives(e01bff94-08bd-4b83-aeef-
4e7d6d5b0dfc).html.

Ensom, Tom, Patricia Falcão, and Chris King. “Software-Based Art Preservation – Project | Tate,” 2021.
https://www.tate.org.uk/about-us/projects/software-based-art-preservation.

Ensom, Tom, and McConchie, Jack. “Preserving Virtual Reality Artworks Report (Tate).” Zenodo,
August 13, 2021. https://doi.org/10.5281/ZENODO.5274102.

Espenschied, Dragan. “Emulation and Access.” Museum of Modern Art (MoMA), December 8, 2017.
https://vimeo.com/278042613/a78ee5e46b.

Espenschied, Dragan, K. Rechert, Dirk von Suchodoletz, Isgandar Valizada, and Nick Russler. “Large-
Scale Curation and Presentation of CD-ROM Art.” In IPRES, 2013.

Falcão, Patricia. “Developing a Risk Assessment Tool for the Conservation of Software- Based
Artworks,” 2010.
https://www.academia.edu/6660777/Developing_a_Risk_Assessment_Tool_for_the_conservation
_of_software_based_artworks_MA_Thesis.

———. “Preservation of Software-Based Art at Tate.” In Digital Art through the Looking Glass: New
Strategies for Archiving, Collecting and Preserving in Digital Humanities, edited by Oliver Grau,
Janina Hoth, and Eveline Wandl-Vogt, 271–87. Krems an der Donau : [Wien]: Edition Donau-
Universität Krems ; ÖAW, Austrian Academy of Science, 2019. https://www.donau-

Chapter 22 --- Caring for Software- and Computer-based Art

66

uni.ac.at/dam/jcr:a29638aa-f334-4abb-9601-
10e36652d09f/Digital_Art_through_the_Looking_Glass_updated.pdf.

———. “Risk Assessment as a Tool in the Conservation of Software-Based Artworks.” EMG- Electronic
Media Review Two 2011-2012 (2011). https://resources.culturalheritage.org/emg-review/volume-
two-2011-2012/falcao/.

Falcão, Patricia, Ashe Alistair, and Brian Jones. “Virtualisation as a Tool for the Conservation of
Software-Based Artworks.” Melbourne, Australia, 2014.
https://www.academia.edu/12462584/Virtualisation_as_a_Tool_for_the_Conservation_of_Softwa
re-Based_Artworks.

Farbowitz, Jonathan. Interview with Jonathan Farbowitz by Tom Ensom and Patricia Falcão, August 14,
2020.

Fauconnier, Sandra. “Many Faces of Wikibase: Rhizome’s Archive of Born-Digital Art and Digital
Preservation.” Wikimedia Foundation News (blog), September 6, 2018.
https://wikimediafoundation.org/news/2018/09/06/rhizome-wikibase/.

Fino-Radin, Ben. “Art In the Age of Obsolescence: Rescuing an Artwork from Crumbling
Technologies.” MoMA: Features and Perspectives on Art and Culture (blog), December 21,
2016. https://stories.moma.org/art-in-the-age-of-obsolescence-1272f1b9b92e.

———. “Digital Preservation Practices and the Rhizome Artbase.” Rhizome at The New Museum, 2011.
http://media.rhizome.org/artbase/documents/Digital-Preservation-Practices-and-the-Rhizome-
ArtBase.pdf.

Fortunato, Flaminia, and Joey Heinen. “There Is No ‘I’ in IOS: Preserving Mobile Technologies as AR
Experiences and Objects.” Presented at the Preserving Immersive Media Workshop, March 27,
2020. https://www.youtube.com/watch?v=6M1YgYhYGf0.

Garousi, Golara, Vahid Garousi, Mahmoud Moussavi, Guenther Ruhe, and Brian Smith. “Evaluating
Usage and Quality of Technical Software Documentation: An Empirical Study.” In Proceedings
of the 17th International Conference on Evaluation and Assessment in Software Engineering -
EASE ’13, 24. Porto de Galinhas, Brazil: ACM Press, 2013.
https://doi.org/10.1145/2460999.2461003.

Gates, Ethan. “QEMU QED - The Missing Manual for Digital Preservation.” Accessed February 2, 2022.
https://eaasi.gitlab.io/program_docs/qemu-qed/.

GNU Operating System. “GNU General Public License.” GNU Operating System. Accessed December 1,
2021. https://www.gnu.org/licenses/gpl-3.0.en.html.

Guggenheim Blog. “How the Guggenheim and NYU Are Conserving Computer-Based Art. Part 1.”
Guggenheim Blog (blog), October 26, 2016. https://www.guggenheim.org/blogs/checklist/how-
the-guggenheim-and-nyu-are-conserving-computer-based-art-part-1.

Guggenheim Museum. “The Conserving Computer-Based Art Initiative (CCBA).” The Guggenheim
Museums and Foundation. Accessed September 2, 2020.
https://www.guggenheim.org/conservation/the-conserving-computer-based-art-initiative.

Hamilton, Emily. “Email to the Authors: Book Project and a Question about 3D Printed Art,” November
16, 2020.

———. “Reprinting as a Conservation Strategy: Collecting Additive Manufactured Works at
SFMOMA.” In Future Talks 017: The Silver Edition. Visions. Innovation in Technology and

Chapter 22 --- Caring for Software- and Computer-based Art

67

Conservation of the Modern. Postprints of the Conference Held in Munich, 2017, edited by Tim
Bechthold, 170–75, 2017.

Hellar, Mark. “The Role Of The Technical Narrative For Preserving New Media Art.” The Electronic
Media Review Volume Three 2015 (2015). http://29aqcgc1xnh17fykn459grmc-wpengine.netdna-
ssl.com/emg-review/wp-content/uploads/sites/15/2018/09/EMG-Vol.-3-Hellar.pdf.

Heritrix3 (Software). Internet Archive. Accessed February 7, 2022.
https://github.com/internetarchive/heritrix3.

IBM Cloud Education. “What Are Containers?,” June 23, 2021.
https://www.ibm.com/cloud/learn/containers.

International Centre for the Study of the Preservation and Restoration of Cultural Property (ICCROM).
“A Guide to Risk Management of Cultural Heritage.” Canadian Conservation Institute (CCI),
2016. https://www.iccrom.org/wp-content/uploads/Guide-to-Risk-Managment_English.pdf.

King, Chris. Interview with Chris King by Tom Ensom, 2021.
Klomp, Paul. Interview with Paul Klomp by Tom Ensom. Audio Recording, March 3, 2021.
Laurenson, Pip. “Authenticity, Change and Loss in the Conservation of Time-Based Media Installations.”

Tate Papers, no. 6 (Autumn 2006). https://www.tate.org.uk/research/publications/tate-
papers/06/authenticity-change-and-loss-conservation-of-time-based-media-installations.

———. “Old Media, New Media? Significant Difference and the Conservation of Software-Based Art.”
In New Collecting: Exhibiting and Audiences after New Media Art, edited by Beryl Graham, 1st
ed., 73–96. Routledge, 2014. https://doi.org/10.4324/9781315597898-4.

Library of Congress. “WARC, Web ARChive File Format.” Sustainability of Digital Formats: Planning
for Library of Congress Collections, 2020.
https://www.loc.gov/preservation/digital/formats/fdd/fdd000236.shtml.

Liebetraut, Thomas, Klaus Rechert, Isgandar Valizada, Konrad Meier, and Dirk Von Suchodoletz.
“Emulation-as-a-Service - The Past in the Cloud.” In 2014 IEEE 7th International Conference on
Cloud Computing, 906–13, 2014. https://doi.org/10.1109/CLOUD.2014.124.

LIMA. “ArtHost Report 2017 - 2018.” Amsterdam, The Netherlands, 2018. https://www.li-
ma.nl/lima/sites/default/files/Arthost%20end%20report_FINAL%20(2).pdf.

Lintermann, Bernd, Chiara Marchini Camia, Arnaud Obermann, and Claudia Roeck. “Jeffrey Shaw, The
Legible City (1989-1991).” In Preservation of Digital Art: Theory and Practice: The Project
Digital Art Conservation, edited by Bernhard Serexhe and Eva-Maria Höllerer, 488–512.
Karlsruhe: Zentrum für Kunst und Medientechnologie, 2013.

Liu, Qinyue. “An Investigation Into New Media Artists’ Personal Preservation Practices.” Arts
Management and Technology Laboratory, December 17, 2020. https://amt-
lab.org/blog/2020/10/investigation-into-new-media-artists-personal-preservation-practices.

Lozano-Hemmer, Rafael. “Best Practices for Conservation of Media Art from an Artist’s Perspective.”
GitHub Antimodular Best-practices-for-conservation-of-media-art, September 28, 2015.
https://github.com/antimodular/Best-practices-for-conservation-of-media-art.

Lurk, Tabea. “Methodologies of Multimedial Documentation and Archiving.” In Preserving and
Exhibiting Media Art: Challenges and Perspectives, edited by Julia Noordegraaf, Cosetta G.
Saba, Barbara Le Maître, and Vinzenz Hediger, 149–95. Framing Film. Amsterdam: Amsterdam
University Press, 2013.

Chapter 22 --- Caring for Software- and Computer-based Art

68

———. “Virtualisation as Conservation Measure.” In Archiving Conference, 2008:221–25. Society for
Imaging Science and Technology, 2008.

Magnin, Emilie. “Defining an Ethical Framework for Preserving Cory Arcangel’s Super Mario Clouds –
Electronic Media Review.” In Electronic Media Review, Vol. Four (2015-2016). AIC Electronic
Media Group, 2015. https://resources.culturalheritage.org/emg-review/volume-4-2015-
2016/magnin/.

Malík, Martin. HWiNFO (Software). Accessed October 20, 2021. https://www.hwinfo.com.
McConchie, Jack, Tom Ensom, and Louise Lawson. “Preserving Immersive Media.” Tate, 2021.
McCue, T.J. “STL Files: What They Are and How to Use Them.” Lifewire, November 14, 2019.

http://guilfordfreelibrary.org/wp-content/uploads/2019/11/what-is-an-.stl-file.pdf.
McGarrigle, Conor. “Preserving Born Digital Art: Lessons From Artists’ Practice.” New Review of

Information Networking 20, no. 1–2 (July 3, 2015): 170–78.
https://doi.org/10.1080/13614576.2015.1113055.

Metropolitan Museum of Art. “Sample Documentation and Templates.” The Metropolitan Museum of
Art. Accessed June 24, 2021. https://www.metmuseum.org/about-the-met/conservation-and-
scientific-research/time-based-media-working-group/documentation.

National Archives. “Web Archiving Guidance,” 2011.
https://cdn.nationalarchives.gov.uk/documents/information-management/web-archiving-
guidance.pdf.

Obermann, Arnaud. Interview with Arnaud Obermann by Tom Ensom. Audio Recording, March 3, 2021.
Oleksik, Peter. “Email to the Authors: Book Project and a Question about 3D Printed Art.,” February 19,

2021.
Oleksik, Peter, and Megan Randall. “(Material Transfers & Translations) Tauba Auerbach’s Altar/Engine:

A Case Study in Reconceptualizing Materiality.” Presented at the AIC’s 46th Annual Meeting,
Houston, Texas, USA, June 1, 2018.
https://aics46thannualmeeting2018.sched.com/event/Cz5w/material-transfers-translations-tauba-
auerbachs-altarengine-a-case-study-in-reconceptualizing-materiality.

Open Source Initiative. “The MIT License.” Open Source Initiative. Accessed December 1, 2021.
https://opensource.org/licenses/MIT.

Oracle Corporation. VBoxManage (Software), 2004. https://www.virtualbox.org/manual/ch08.html.
———. VirtualBox (Software), 2007. https://www.virtualbox.org/.
Paul, Christiane. “Email to the Authors: Time-Based Media Art Conservation: Source Code Analysis for

Software-Based Artworks,” February 19, 2021.
Phillips, Joanna, Emma Dickson, Deena Engel, and Jonathan Farbowitz. “Restoring Brandon, Shu Lea

Cheang’s Early Web Artwork.” Guggenheim Blog (blog), May 16, 2017.
https://www.guggenheim.org/blogs/checklist/restoring-brandon-shu-lea-cheangs-early-web-
artwork.

Phillips, Joanna, Deena Engel, Jonathan Farbowitz, and Karl Toby Rosenberg. “The Guggenheim
Restores John F. Simon Jr.’s Early Web Artwork ‘Unfolding Object.’” Guggenheim Blog (blog),
November 19, 2018. https://www.guggenheim.org/blogs/checklist/the-guggenheim-restores-john-
f-simon-jr-early-web-artwork-unfolding-object.

Chapter 22 --- Caring for Software- and Computer-based Art

69

Post, Colin. “Preservation Practices of New Media Artists: Challenges, Strategies, and Attitudes in the
Personal Management of Artworks.” Journal of Documentation 73, no. 4 (July 10, 2017): 716–
32. https://doi.org/10.1108/JD-09-2016-0116.

Puckette, Miller, and Varoius. Pure Data (Software), 1996. http://puredata.info.
QEMU Project Developers. QEMU (Software), 2010. https://www.qemu.org/.
———. Qemu-Img (Software), 2021. https://www.qemu.org/docs/master/tools/qemu-img.html.
Reas, Casey. “Reas / Studio - Home (Website),” 2016. https://github.com/REAS/studio/wiki.
Rechert, Klaus, Patricia Falcão, and Tom Ensom. “Introduction to an Emulation-Based Preservation

Strategy for Software-Based Artworks,” December 2016.
http://www.tate.org.uk/research/publications/emulation-based-preservation-strategy-for-software-
based-artworks.

Recode Project. “ReCode Project.” Accessed October 4, 2021. http://recodeproject.com/.
Rhizome. “Conifer (Software),” 2022. https://conifer.rhizome.org/.
Roeck, Claudia. “Conservation Case Study: TraceNoizer by LAN.” Accessed December 1, 2021.

https://www.hek.ch/en/collection/research-and-restauration/conservation-case-study-tracenoizer-
by-lan/.

———. “Email to the Authors: Time-Based Media Art Conservation: Source Code Analysis for
Software-Based Artworks,” February 17, 2021.

———. “Emulating Horizons (2008) by Geert Mul: The Challenges of Intensive Graphics Rendering –
Electronic Media Review.” The Electronic Media Review Volume Five: 2017-2018 (2018).
https://resources.culturalheritage.org/emg-review/volume-5-2017-2018/roeck/.

———. Interview with Claudia Röck by Tom Ensom and Patricia Falcão, July 24, 2020.
Roeck, Claudia, Rafael Gieschke, Klaus Rechert, and Julia Noordegraaf. “Preservation Strategies for an

Internet-Based Artwork Yesterday, Today and Tomorrow,” 2019.
https://doi.org/10.17605/OSF.IO/GF2U9.

Roeck, Claudia, Julia Noordegraaf, and Klaus Rechert. “207.4 Evaluation of Preservation Strategies for
an Interactive, Software-Based Artwork with Complex Behavior Using the Case Study Horizons
(2008) by Geert Mul.,” 2019. https://doi.org/10.17605/OSF.IO/2VPFT.

Rösler, Wolfram. “The Hello World Collection,” 2021. http://helloworldcollection.de.
Rossenova, Lozana. “ArtBase Archive—Context and History: Discovery Phase and User Research 2017–

2019.” Rhizome, 2020a. https://sites.rhizome.org/artbase-re-design/docs/1_Report_ARTBASE-
HISTORY_2020.pdf.

———. “Artbase Redesign Data Models: Design Exploration and Specification Phases 2018–2019,”
2020b. https://sites.rhizome.org/artbase-re-design/data-models.html.

Rothenberg, Jeff. “Avoiding Technological Quicksand: Finding a Viable Technical Foundation for
Digital Preservation: A Report to the Council on Library and Information Resources.”
Washington, DC: Council on Library and Information Resources, 1999.
https://clir.wordpress.clir.org/wp-content/uploads/sites/6/pub77.pdf.

———. “Ensuring the Longevity of Digital Documents.” Scientific American 272, no. 1 (1995): 42–47.
https://www.jstor.org/stable/24980135.

Russel, Roslyn, and Kylie Winkworth. “Significance 2.0, a Guide to Assessing the Significance of
Collections.” Adelaide: Collections Council of Australia, 2009.
https://www.arts.gov.au/sites/default/files/significance-2.0.pdf?acsf_files_redirect.

Chapter 22 --- Caring for Software- and Computer-based Art

70

Sherring, Asti, Mar Cruz, and Nicole Tse. “Exploring the Outlands : A Case-Study on the Conservation
Installation and Artist Interview of David Haines’ and Joyce Hinterding’s Time-Based Art
Installation.” AICCM Bulletin 42, no. 1 (January 2, 2021): 13–25.
https://doi.org/10.1080/10344233.2021.1982540.

Smithsonian. “Smithsonian TBMA Symposia.” Smithsonian Institution, 2014.
https://www.si.edu/tbma/smithsonian-tbma-symposia.

Software Preservation Network (SPN). “EaaSI Emulation-as-a-Service Infrastructure.” Software
Preservation Network. Accessed June 11, 2021.
https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/.

———. “SPN Software Preservation Network (Website),” 2022.
https://www.softwarepreservationnetwork.org/.

Stricot, Morgane, and Matthieu Vlaminck. Interview with Morgane Stricot and Matthieu Vlaminck by
Tom Ensom. Audio Recording, February 15, 2021.

Suchodoletz, Dirk von, Peter Bright, Remco Verdegem, Jasper Schroder, Paul Wheatley, and Jeffrey van
der Hoeven. “Planets Project: Report Describing Results of Case Studies,” May 30, 2008.
https://web.archive.org/web/20201230191241/https://www.planets-
project.eu/docs/reports/Planets_PA5-D3_CaseStudies-final.pdf.

Suchodoletz, Dirk von, Klaus Rechert, and Isgandar Valizada. “Towards Emulation-as-a-Service: Cloud
Services for Versatile Digital Object Access.” International Journal of Digital Curation 8, no. 1
(June 14, 2013): 131–42. https://doi.org/10.2218/ijdc.v8i1.250.

Swalwell, Melanie, and Denise de Vries. “Collecting and Conserving Code: Challenges and Strategies.”
Journal of Media Arts Culture 10, no. 2 (2013).
https://www.academia.edu/3831859/Collecting_and_Conserving_Code_Challenges_and_strategi
es.

W3Schools. “HTML Element Reference.” In W3 Schools. Accessed November 29, 2021.
https://www.w3schools.com/TAGS/default.ASP.

Walker, Sarah. PCem (Software), 2007. https://pcem-emulator.co.uk/.
Waller, Robert. “Conservation Risk Assessment: A Strategy for Managing Resources for Preventive

Conservation.” Studies in Conservation 39, no. sup2 (January 1, 1994): 12–16.
https://doi.org/10.1179/sic.1994.39.Supplement-2.12.

Webrecorder (Software). Rhizome. Accessed February 7, 2022. https://webrecorder.net/about.
Wget (Software). GNU. Accessed February 7, 2022. https://www.gnu.org/software/wget/.
Wharton, Glenn. “Email to the Authors: Time-Based Media Art Conservation: Source Code Analysis for

Software-Based Artworks,” February 1, 2021.
Wharton, Glenn, and Deena Engel. “Museum And University Collaboration In Media Conservation

Research.” The Electronic Media Review Volume Three: 2013-2014 (2015): 8.
https://resources.culturalheritage.org/emg-review/volume-three-2013-2014/wharton/.

Wheatley, Paul. “Digital Preservation and BBC Domesday.” In Electronic Media Group Annual Meeting
of the American Institute for Conservation of Historic and Artistic Works, 1–9. Citeseer, 2004.

